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Abstract: Overarching goals for the practice of medicine include 
preventing disease, making the correct diagnosis, and initiating 
evidence-based therapy to improve patient symptoms and quality of life. 
Precision medicine is an emerging field that encompasses these import-
ant goals. Precision medicine can be defined as a form of medicine that 
uses information about a patient’s genes, proteins, environment, and 
lifestyle to prevent, diagnose, or treat disease. Oncologists have effec-
tively used precision medicine for years to improve diagnostic strategies 
and treatment options; however, precision medicine has not been used 
to any significant degree in patients with disorders of gut-brain interac-
tion (DGBIs). There is an argument to use precision medicine in DGBIs 
because these disorders are highly prevalent, affecting approximately 
40% of the world’s population. Functional dyspepsia, irritable bowel 
syndrome, and chronic constipation, some of the most prevalent and 
important DGBIs, are also clinically significant because they impose a 
negative impact on the health care system and greatly reduce patients’ 
quality of life. This article defines precision medicine, clarifies differenc-
es between precision medicine and personalized medicine, discusses 
the use of precision medicine in the field of DGBIs, reviews its limita-
tions, and outlines a strategy for its use in this field. 

Precision medicine is a form of medicine that uses information 
about a person’s genes, proteins, environment, lifestyle, and psy-
chological profile to prevent, diagnose, or treat disease.1 The goal 

of precision medicine is to classify patients with shared characteristics 
into distinct subgroups based on specific and similar clinical features, 
prognostic factors, and treatment. Precision medicine is often confused 
with personalized medicine, although the approaches are quite different. 
Personalized medicine focuses on the individual patient—a single person 
at a time. In contrast, precision medicine focuses on subpopulations 
identified by clinical and molecular characteristics. The value of preci-
sion medicine becomes clear when comparing it with the standard (ie, 
traditional) treatment paradigm (Figure 1). Traditionally, a population 
of interest (eg, patients with irritable bowel syndrome [IBS]) would be 
offered a specific treatment (eg, a new medication) to improve their 
symptoms. In general, there would be 3 main outcomes from that course 
of therapy—some patients would respond, others would not respond, 
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and some would develop adverse effects—although there 
may be some overlap with these potential outcomes. 
In precision medicine, the population of interest is 
subgrouped into distinct populations based on genetic 
factors, demographics, symptoms (eg, severity, frequency, 
intensity), pharmacogenomics, and comorbid systemic or 
psychological disorders (see the following paragraph on 
multiomics). Patients would then be treated with a spe-
cific therapy predetermined to provide a positive response 
with little chance of causing a side effect. Thus, some 
patients would be treated with therapy A, whereas others 
would be treated with therapy B or C, depending on their 
clinical and molecular characteristics. In theory, response 
rates for each group would approach 100% and adverse 
event rates would approach 0%. Although not yet used 
to direct treatment, latent class analysis has been used to 
group IBS patients into different subpopulations based on 
symptoms and their psychological state.2 This subgroup-
ing is a critical first step to advance the use of precision 
medicine in disorders of gut-brain interaction (DGBIs).

A component critical to the success of precision 
medicine is multiomics, which involves various biologic 
data points combining different omics during analysis to 
provide a holistic understanding of disease.1 As illustrated 

in Figure 2 and explained in the figure legend, multiomics 
is important to understanding disease development and 
symptom expression. These omics vary in importance 
from one disease state to another and also vary from 
individual to individual. Thus, genomic factors combined 
with past exposure (exposomics) and microbiome factors 
may be critical to symptom expression in one patient with 
IBS with diarrhea (IBS-D), whereas genomics, epigenom-
ics, and metabolomics may be more critical in symptom 
expression in another patient with IBS-D. 

Precision medicine is important to the continued 
progress of treatment of DGBIs for a number of reasons. 
One, DGBIs are prevalent. The Rome Foundation Global 
Epidemiology Study determined that 30% to 40% of 
adults have symptoms of at least 1 DGBI.3 Two, DGBIs 
impose a significant economic impact on the health care 
system.4,5 A recent study from the Netherlands identified 
mean direct and indirect costs of IBS (Rome III criteria) at 
$2444 per quarter or nearly $10,000 per patient per year.6 
Three, DGBIs significantly reduce patients’ quality of life, 
on par with patients who have end-stage renal disease and 
diabetes.7,8 Female patients with IBS typically score lower 
than male patients on most quality-of-life dimensions.9 
Four, precision medicine provides an opportunity to 

Figure 1. Traditional therapy vs precision medicine. In current practice (traditional therapy), a population of interest is 
offered an intervention to improve symptoms. Three outcomes typically evolve: some patients respond, others do not respond, 
and some develop adverse effects. In precision medicine, the use of multiomics helps classify subgroups based on clinical and 
molecular characteristics to identify the therapy most likely to provide a beneficial response without causing a side effect. 
Thus, some patients are treated with therapy A, whereas others are treated with therapy B or C, ideally maximizing response 
rates while minimizing adverse event rates.
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boost diagnostic accuracy, minimize or eliminate diag-
nostic uncertainty, and help predict treatment response. 
For example, measuring serum interleukin (IL)-22 levels 
(immunoprofiling) predicts therapeutic response in 
patients with Crohn’s disease treated with anti–IL-23p19 
agents.10 Lastly, precision medicine will improve thera-
peutic response. For example, in treatment trials of IBS, 
functional dyspepsia (FD), and gastroparesis, placebo 
response rates typically range from 30% to 35%, and the 
therapeutic gains for many medications are limited to the 
range of 10% to 20%.11-14 Precisely classifying patients 
into distinct subgroups (eg, based on genes, proteins, 
environmental factors, lifestyle, and ideally psychological 
profile as well) should greatly increase the response rate 
(ideally to 100%) and slash the placebo response (ide-
ally to 0%). One example of this comes from studies in 
inflammatory bowel disease (IBD), where transcriptom-
ics found that oncostatin M (OSM) was associated with 
increased responsiveness to anti–tumor necrosis factor 
(TNF) therapy in patients with IBD.15

This article aims to define precision medicine, dis-
tinguish the fields of precision medicine and personalized 
medicine, and review the importance of how precision 
medicine can further advance the field of DGBIs while 
acknowledging some of its limitations.

Precision Medicine in Other Disciplines 

Oncology is at the forefront of precision medicine. 
Significant achievements have been made in the area of 
molecular testing dating back to the late 1900s, spanning 
both hematologic and solid tumor malignancies, through 
the combined efforts of oncologists and pathologists.16 
The identification of oncogenes, tumor suppressor genes, 
protein expression, and receptor activity through various 
laboratory methods, including Southern blotting, immu-
nohistochemistry, and flow cytometry, prompted research 
in genome sequencing in oncology, which began more 
than a decade ago.17 Genome sequencing has continued 
to evolve with the identification of systemic mutations 

Figure 2. Multiomics is the interplay of various omics. These various processes are critical to the development of a specific 
disease state and symptom expression. The type and extent of omic process differs from patient to patient. The genome 
is the complete set of DNA that contains all genetic instructions for an organism. The exposome is the measure of all the 
environmental exposures of an individual in a lifetime. The epigenome refers to modifications to the genome that do not 
affect the DNA sequence. For example, environmental factors cause alterations in DNA methylation, histone modifications, 
and messenger RNA (mRNA) synthesis, thus changing phenotypic expression of genes. The transcriptome refers to the full 
range of mRNA expressed, whereas the proteome refers to the complete set of proteins expressed by an organism. The gut 
microbiome includes not just bacteria and their genes but also fungi and viruses. The metabolome represents the collection 
of small molecules and metabolites present in living tissue and biosamples, whereas the immunome refers to all the genes and 
proteins that constitute the immune system. 
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and gene alterations through next-generation sequencing, 
a large parallel sequencing technique to efficiently assess 
entire cancer genomes.18 As a result, cancers can now 
be grouped based on phenotypes or genotypes, such as 
receptor or gene expression subgroups, allowing for more 
targeted therapies that treat patients effectively while min-
imizing side effects and improving outcomes. This cancer 
profiling has improved prognostication of cancers, as wit-
nessed in the identification of human epidermal growth 
factor receptor 2 (HER2) mutations for breast cancer, 
BRAF gene mutations in melanoma, KRAS gene muta-
tions in colorectal cancer, and many other instances.19,20 
One example of precision therapy in oncology involves 
cetuximab (Erbitux, Lilly), a monoclonal antibody that 
targets colorectal cancers expressing epidermal growth fac-
tor receptor. When used in this targeted population, cetux-
imab significantly improves survival benefit with enhanced 
quality of life.21 Other well-known precision therapies 
include imatinib, a tyrosine kinase inhibitor targeting the 
BCR-ABL1 fusion gene in chronic myeloid leukemia, and 
trastuzumab for HER2-positive breast cancer.16 Ongoing 
strategies to classify cancers based on molecular markers 
and genes have changed the therapeutic playing field and 
improved the safety profiles of currently available agents. 
The valuable insights from precision oncology diagnostics 
and therapeutics provide a framework that can be used to 
guide precision medicine in DGBIs.

Using precision medicine in the evaluation and treat-
ment of patients with IBD is much needed, as IBD can 
be a debilitating and lifelong condition associated with 
a long list of potential complications, including cancer.22 
Approaches to precision medicine in IBD have adopted 
similar structures to oncology, although they are less 
developed at this point in time. Currently, several bio-
markers are routinely used to monitor patients with IBD. 
C-reactive protein (CRP), fecal calprotectin, and albumin 
are commonly used to evaluate and monitor inflammatory 
and nutritional status in patients with IBD.23 Thiopurine 
methyltransferase genotype testing is utilized to assess 
thiopurine metabolism, thereby improving its efficacy 
and safety in IBD.24 Monitoring serum drug levels of 
biologic therapies, particularly anti-TNF therapy, is also 
widely used to help guide treatment.

Many factors have been shown to correlate with 
IBD severity or response to therapy, and these can be 
incorporated into a precision medicine treatment plan. 
On a genetic level, factors associated with disease activity 
include phagocyte pathways (nucleotide-binding oligom-
erization domain containing 2 [NOD2]), intestinal bar-
rier function (hepatocyte nuclear factor 4 alpha), immune 
signaling, fibrosis (OSM receptor and SMAD3), and 
cellular homeostasis.22,25 For example, the genetic NOD2 
mutation is associated with more severe disease.26 Genetic 

testing of transcripts in serum or intestinal biopsies can 
help differentiate responders from nonresponders to 
anti-TNF therapy and anti-integrin therapy.22 Similarly, 
identification of phenotypic expression of the OSM 
receptor can help distinguish the response profile to anti-
TNF therapy.27 Variations in the gut microbiome, such 
as Clostridium and Bacteroides populations, and insights 
from metagenomic sequencing, metabolomic analysis 
(secondary bile acid production), and proteome profiles 
(serum proteins caspase 8, interferon lambda receptor 
1) have been studied to identify a greater likelihood to 
respond to anti-integrin and anticytokine therapy.28

Recent studies have focused on the identification of 
biomarkers that could aid in the diagnosis and disease 
monitoring of patients with IBD. These biomarkers 
include αvβ6 integrin antibody, microRNA (miRNA), 
the OSM receptor, B-cell–activating factor (BAFF), 
and prostaglandin E-major urinary metabolite (PGE-
MUM).29 Importantly, the αvβ6 integrin antibody 
demonstrates greater than 90% sensitivity and specificity 
in diagnosing ulcerative colitis, whereas PGE-MUM 
shows stronger correlation with IBD endoscopic activity 
than CRP.30,31 Recent studies demonstrate that miRNA 
dysregulation correlates with intestinal inflammation, and 
increased OSM receptor or BAFF cytokine expression 
correlates with disease severity and inflammation.29,32-34 

The aforementioned findings demonstrate that the 
future of precision medicine in IBD likely involves adopt-
ing a comprehensive multiomics model to effectively 
stratify patient populations for targeted treatments. Ide-
ally, readily available and inexpensive biomarkers would 
facilitate diagnosis, guide therapy, and predict severity 
of disease or the risk of relapse. However, despite recent 
advances in IBD, the clinical use of precision medicine 
biomarkers remains limited. Future efforts should focus 
on validating these evidence-based tests, establishing 
standardized protocols, and educating providers on how 
to readily incorporate them into their practice paradigm. 

Precision Medicine Tools Available for 
Disorders of Gut-Brain Interaction

A single highly sensitive and specific biomarker for the 
diagnosis of IBS does not currently exist, although anti
vinculin and anticytolethal distending toxin B antibodies 
appear to be valid markers of postinfectious IBS and can 
help distinguish IBS-D from IBD.35-37 However, it is 
worth noting that a positive test may not lead to a change 
in treatment. A variant in the IL-6 gene was associated 
with an increased risk for postinfectious IBS in people 
involved in the Walkerton, Canada water contamination 
incident in May 2000.38 An accurate prognostic marker 
for predicting a therapeutic response in all IBS patients 
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does not exist. Some experts currently promote the con-
cept that the best biomarker for the diagnosis of IBS is a 
combination of individual elements, including a thought-
ful history and physical examination, a careful review of 
potential warning signs, the Rome IV criteria, and limited 
diagnostic testing.14,39 The Rome criteria were originally 
designed primarily for research, although a modified 
version can be easily used in clinical practice.40 Validated 
patient-reported outcomes for IBS are available and 
should be used to ensure that patient-centric therapeutic 
outcomes are addressed.41 The severity of gastrointestinal 
symptoms and the presence of extraintestinal symptoms, 
along with ongoing psychological distress (if present), 
can be combined to phenotype IBS patients into distinct 
subgroups using latent class analysis, although the utility 
of this for predicting therapeutic response has not yet 
been evaluated.2,42 Pharmacogenomic testing can deter-
mine whether a patient is a hyper- or hypometabolizer of 
different drug classes, thus predicting the need for dose 
adjustments, although this is not routinely employed in 
clinical practice.43 For example, 7% of Swedes are poor 
metabolizers of CYP2D6, meaning that they may have 
enhanced effects to nortriptyline.44 The long variant of 
SERT (5-HTTLPR), the serotonin transport protein, is 
associated with increased efficacy of alosetron in IBS-D 
patients, whereas the short variant (5HTT) is associated 
with a reduced response rate to tegaserod.45,46 A positive 
lactulose breath test has been shown to predict a higher 
likelihood of response to rifaximin in patients with 
IBS-D, whereas elevated methane levels are associated 
with IBS with constipation (IBS-C) and chronic consti-
pation.47,48 Despite these options, diagnostic and thera-
peutic uncertainty persists for many health care providers 
as they evaluate patients with IBS symptoms, thus high-
lighting the need for precision medicine. Although data 
are limited, metabolomics (see Figure 2) has the potential 
to address this dilemma. For example, a genome-wide 
association study from the United Kingdom involving 
more than 53,000 adults with IBS identified 6 suscepti-
bility loci.49 All of these loci were identified on autosomal 
chromosomes; none were present on the X chromosome. 
There was a strong genome-wide correlation with IBS 
and anxiety, depression, and neuroticism. Point-of-care 
blood testing could identify these loci in patients with IBS 
symptoms, thereby improving diagnostic accuracy. Iden-
tifying epigenomic changes, modifications to the genome 
that do not affect the DNA sequence, may also improve 
diagnostic accuracy, and one study in IBS patients uncov-
ered changes in methylated DNA and miRNA.50 The 
clinical utility of this is currently unknown. Transcrip-
tomic changes, reflecting the full range of messenger RNA 
expressed, were detected in one study focusing on patients 
with IBS-D.51 Proteomic changes, defined as the complete 

set of proteins expressed by an organism, were identified 
in patients with IBS-D after dietary changes.52 Finally, 
research involving the gut microbiome has consistently 
demonstrated that IBS patients are different from healthy 
controls and patients with IBD. Although a specific signa-
ture for individual IBS subtypes has not been identified, 
reduced levels of Bifidobacterium and Bacteroidetes appear 
to be a common theme across studies.53-55

A precision medicine–based approach would appear 
particularly well suited for patients with FD, given the 
complex pathophysiology of this condition, its wide 
prevalence (roughly 10% in the United States), and the 
fact that there is currently no treatment approved by the 
US Food and Drug Administration for the condition 
despite its prevalence.3 FD is divided into 2 subtypes, 
epigastric pain syndrome (EPS) and postprandial distress 
syndrome (PDS). Numerous physiologic mechanisms are 
thought to contribute to symptoms, including impaired 
gastric accommodation, delayed gastric emptying, visceral 
hypersensitivity, abnormalities in intestinal permeability, 
duodenal immune alterations, and changes in the gut 
microbiome.56,57 Thus, FD represents a heterogeneous 
disorder in which precision medicine would provide 
welcome guidance to subclassify patients and direct 
treatment, particularly as there is currently no universally 
accepted treatment algorithm.

Both genomic factors and microbiome alterations 
have been implicated in FD. In a recent survey of mul-
tiple large population-based biobanks involving 10,078 
FD patients and 351,282 controls, no genome-wide 
significant association was identified; however, suggestive 
signals were detected for 13 independent loci.58 The her-
itability of FD was estimated to be 5%, but a significant 
genetic correlation with other gastrointestinal conditions 
(eg, hiatal hernia, gastritis, duodenitis), pain-related 
traits, and personality traits (eg, neuroticism, anxiety, 
depression) was demonstrated, suggesting that FD can 
present with other unique symptom and personality 
traits as a result of genetic factors. In a meta-analysis of 35 
case-control studies, minor allele (T) of GNB3 825C>T 
was associated with increased susceptibility to EPS, but 
a number of other genes evaluated were not found to be 
associated with susceptibility to FD at large.59 However, 
in a study of 174 Greek patients with FD, significant 
associations were identified in CD14 rs2569190, GNB3 
rs5443, MIF rs755622, and TRPV1 rs 222747 gene 
polymorphisms compared with controls; furthermore, 
CD14 CT genotype was associated with higher epigastric 
burning and nausea scores.60 Certainly, more investiga-
tion is needed, but these data suggest that genomics could 
play a role in classifying and predicting unique symptom 
presentations in FD.

With respect to the microbiome, a recent study 
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compared the duodenal microbiome via analysis of 
duodenal aspirates among patients with FD, IBS, and 
healthy controls and found that the α-diversity index was 
significantly lower in patients with FD and IBS compared 
with controls.61 Specifically, the relative abundance of the 
Chloroflexota phylum was lower in patients with FD and 
IBS compared with controls, and the relative abundance 
of the Rhodothermota and Thermotogota phyla was lower 
in patients with FD compared with controls (but not in 
patients with IBS). Additionally, in a study of 50 patients 
with FD, compared with 30 control patients, analysis of 
the mucosa-associated microbiota obtained via duodenal 
biopsies revealed that a relative abundance of Firmicutes 
was associated with increased dyspeptic symptom burden, 
whereas taxa affiliated with Bacteroidota decreased with 
increasing symptom burden.62 Moreover, an inverse rela-
tionship was identified between gastric emptying time and 
the relative abundance of Veillonella species. Microbiome 
assessment may be another pathway by which precision 
medicine can stratify patients and potentially identify 
novel treatment mechanisms via targeted modulation of 
the gut microbiome. 

Finally, there is evidence that diet may trigger 
dyspeptic symptoms in some patients. In a study of 50 
patients with FD, compared with 23 healthy controls, 
lamina propria mononuclear cells (LPMCs) were isolated 
from duodenal biopsies and exposed to gluten and glia-
din. In response to gliadin (but not gluten), the effector 
Th2-like population was increased in LPMCs in patients 
with FD compared with controls. Furthermore, the gene 
expression of TRAV26-2, a T-cell receptor variant associ-
ated with gliadin processing, was found to be reduced in 
patients with FD.63 These findings highlight an interesting 
interplay between gene expression/immune response and 
diet, underscoring another area where precision medicine 
could refine diagnosis and treatment in DGBIs, particu-
larly given the frequent association between DGBIs (such 
as IBS and FD) and dietary triggers. 

Precision medicine in chronic constipation is starting 
to evolve through a growing understanding of individu-
alized symptom and microbiome profiles. Chronic con-
stipation affects 10% to 15% of the general population, 
mostly consisting of those with functional constipation, 
leading to significantly impaired quality of life.64 There 
is a need for precision medicine approaches in functional 
constipation, where treatment is limited and health care 
resource utilization is sizable.65 Current efforts in clini-
cal phenotyping include transit testing and anorectal 
manometry, both used to tailor therapy in medically 
refractory chronic constipation patients.66 Microbial dys-
biosis has been shown to contribute to the pathogenesis 
of chronic constipation, raising potential for treatment 
options such as probiotics, prebiotics, antibiotics, or fecal 

microbiota transplantation.67 The use of artificial intelli-
gence to devise a personalized microbiome modulatory 
diet has been shown to improve constipation and quality 
of life, further supporting the potential role of individual 
microbiome-directed therapies.68

Bile acid diarrhea (BAD) is another area where pre-
cision medicine is gaining momentum, as deeper insights 
into bile acid metabolism and regulatory pathways may 
guide diagnostic and therapeutic approaches. BAD affects 
one-fourth of patients presenting with chronic diarrhea as 
a consequence of dysregulation of enterohepatic circula-
tion through either excessive synthesis or reduced absorp-
tion.69 Molecular mediators such as fibroblast growth 
factor 19 (FGF19), farnesoid X receptor (FXR), and 
Takeda G protein–coupled receptor 5 all play key roles 
in bile acid homeostasis.70 Alterations in gut microbiome 
have been correlated with BAD, indicating interplay with 
colonic bacteria and metabolism of bile acids.71 Emerging 
studies suggest that serum and fecal biomarkers, includ-
ing reduced serum FGF19 levels, increased 7α-hydroxy-
4-cholesten-3-one, or the selenium homotaurocholic acid 
test (75SeHCAT), may allow for more accurate diagnosis 
and stratification of patients with BAD who could benefit 
from specific therapies.72 Such insights have opened the 
door to individualized treatment strategies, including bile 
acid sequestrants and FXR agonists, based on a patient’s 
biochemical profile.73 These developments support an 
effort to shift from standard therapies toward more guided 
interventions in BAD, although further research is needed 
to validate diagnostic and therapeutic methods.

Pathway for Precision Medicine in 
Disorders of Gut-Brain Interaction

Adopting a precision medicine–based model to diagnose 
and treat DGBIs should help propel this important field 
of medicine forward and lead to improved patient care. 
A basic model of how such a model could fit into future 
clinical practice is proposed in Figure 3. The first step 
would be to analyze a patient’s unique predefined risk 
factors with genome sequencing, as well as analysis of one’s 
transcriptome, proteome, and immunome, to identify 
specific inheritable factors that put an individual at risk 
for a specific DGBI. Next, assessment of environmental 
factors, acquired as a result of an individual’s unique expo-
sures in life, such as one’s epigenome, metabolome, and, 
importantly, microbiome characterization, would also 
be necessary to further risk stratify and classify patients. 
This information, combined with an individual’s unique 
symptom presentation, could then be incorporated into a 
large database, which when integrated with artificial intel-
ligence, could ultimately yield not only a diagnosis but 
identify a specific subclassification of DGBI presentation. 
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Subsequently, testing an individual’s pharmacogenomic 
profile to help predict treatment response and risk of 
adverse events, as well as assessing one’s immune response 
to dietary factors such as wheat proteins, could help pin-
point the right treatment for the right patient. As an exam-
ple, a recent randomized, double-blind, sham-controlled 
multicenter trial found that a novel 18-food serum immu-
noglobulin G assay could be used to guide dietary therapy 
for patients with IBS.74 As it stands, treatment options for 
many DGBIs are limited and universally accepted treat-
ment algorithms are lacking. Furthermore, patients are 
placed into large diagnostic categories where few subclassi-
fications exist. Disorders in which subcategories of disease 
presentation have been defined, such as EPS and PDS for 
FD and IBS-C, IBS-D, and IBS mixed for IBS, are in the 
minority. Thus, the clinician is often left with little guid-
ance regarding how to identify the best treatment for each 
patient. Precision medicine would fundamentally shift the 
approach to DGBIs by utilizing the multitude of inherited 
and acquired individual factors, which no doubt influence 
individual symptom manifestation, to assign patients into 
precise DGBI subclassifications, which would then guide 
highly precise treatment pathways that maximize efficacy 
and limit the potential for adverse effects. 

The Future 

The future of precision medicine in DGBIs has the poten-
tial to transform clinical care. With continued advances in 
multiomics, patients will be more accurately subclassified 
into clinically significant phenotypes that build upon tra-
ditional generalized disease labels. Much can be learned 
from the fields of oncology and IBD, where genomic and 
transcriptomic patterns already guide immunosuppressive 

and cancer therapy. Cell-free tumor DNA testing is gain-
ing traction for a quick analysis of patient genes, as seen in 
FoundationOne Liquid CDx, which identifies more than 
300 genes to guide solid tumor cancer therapy.75 Similarly, 
patient-derived organoids for targeted therapies using 
biopsied and cultured organ tissue can help delineate the 
ideal treatment strategy.76 Biobanks will start to play a 
larger role in building a foundation of large data stores of 
patient biospecimens linked to clinical phenotypes. Newly 
emerging and rapidly transforming technology, including 
artificial intelligence, could more efficiently interpret the 
complex data analysis of multiomics, identifying predic-
tive patterns that guide both diagnosis and treatment. 
Wearable technologies could be refined and utilized, such 
as a digital symptom tracker or point-of-care testing that 
works to further classify a disease phenotype, allowing 
real-time evaluations to personalize patient care.

However, several challenges remain in precision med-
icine. There is a need for validation of serum biomarkers 
and multiomics signatures in larger studies. Large data 
pools raise ethical concerns about maintaining patient 
privacy and confidentiality. Widespread availability of 
different testing methods, clinical workflows to interpret 
complex results, and cost-effective access to diagnostics will 
be essential for future practice. Research funding will be 
critical. Although the National Institutes of Health appro-
priates billions of dollars per year for oncology research, the 
level of funding for DGBIs is but a fraction of this.

Conclusion 

In many ways, precision medicine is the future of DGBI 
management. Precision medicine is already a part of real 
practice in other fields of medicine such as oncology and 
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Figure 3. A proposed pathway for precision medicine in DGBIs.
AI, artificial intelligence; DGBIs, disorders of gut-brain interaction.
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other subspecialities of gastroenterology such as IBD. 
DGBIs, in particular, appear ripe for precision medicine 
given their complex pathophysiology, frequent overlap 
with other systemic and psychological disorders, variable 
symptom presentations, and the recognized intricate 
interplay between environmental factors (such as the 
microbiome and diet) and genetics/immune response. 
Furthermore, despite the wide prevalence of DGBIs, gen-
erally speaking, treatment options are limited. Adopting 
precision medicine would allow health care providers to 
better understand how DGBIs present differently among 
groups of patients, including those with the same disorder, 
and would help to identify specific treatments for unique 
subclassifications of patients, which would maximize 
efficacy and minimize adverse effects. Importantly, pre-
cision-based medicine may change how DGBIs are diag-
nosed, as the field moves from symptom-based criteria 
to a classification system based on genetics, biomarkers, 
and symptoms. By understanding how groups of patients 
present differently, precision medicine will also open the 
door for discovery of novel treatments, which are sorely 
needed for DGBIs, diseases that are frequently difficult 
to treat in current practice. Certainly, precision medicine 
is not without limitations. For instance, adopting a preci-
sion medicine–based approach may lead to more testing, 
particularly if genomic profiling, microbiome assessment, 
and pharmacogenetic testing, among other testing, are 
required for all patients. This may be burdensome and 
costly, especially because of the costs associated with com-
puting the vast amounts of data required to classify and 
risk stratify individual patients. However, with the rise of 
artificial intelligence, it is likely that such a process will 
become more efficient and less costly with time. As well, 
it will be critical to demonstrate that a new biomarker (or 
genetic test or microbiome profile) leads to a change in 
treatment or outcome.

In short, precision medicine is already part of current 
medical practice and appears poised to expand across 
all fields in the near future. The groundwork for preci-
sion medicine has been laid in DGBIs and continues to 
expand as the field gains more understanding about the 
complex interplay between inherited traits and environ-
mental exposures, which influence the individual man-
ifestation of symptoms and response to treatment. It is 
only a matter of time before precision medicine becomes 
firmly entrenched in the clinical management of DGBIs, 
a field that remains incompletely understood, where diag-
nosis and treatment are often uncertain—a field where 
precision is needed.
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