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Abstract: Artificial intelligence (AI) could change the practice of 

gastroenterology through its ability to both acquire and analyze 

information with speed, reproducibility, and, potentially, insight 

that may exceed that of human medical specialists. AI is powered 

by computational methods that allow machines to replicate clin-

ical pattern recognition used by gastroenterology specialists to 

interpret endoscopic or cross-sectional images; understand the 

meaning and intent of medical documents; and merge different 

types of data to infer a diagnosis, prognosis, or expected outcome. 

Ongoing research is studying the use of AI for automated inter-

pretation of text from colonoscopy and clinical documents for 

improved quality and patient phenotyping as well as enhanced 

detection and descriptions of polyps and other endoscopic lesions, 

and for predicting the probability of future therapeutic response 

early in a treatment course. This article introduces emerging 

technologies of natural language processing, machine vision, and 

machine learning for data analytics, and describes current and 

future applications in gastroenterology.

Artificial intelligence (AI) has arrived, touching industries from 
entertainment and education to manufacturing and medicine. 
AI is a concept of machine capabilities to independently col-

lect information and then make measurements, judgments, and pre-
dictions in the context of prior knowledge. AI is powered by machine 
learning, a collection of computational methods used to learn from 
patterns and relationships in training data to predict outcomes or 
events. Packaged in both the hope and hype of AI are concepts of 
accuracy, speed, reduced costs, and improved insights beyond what 
humans can perceive. These potential facets of AI make it an attrac-
tive tool for helping to realize the promises of precision, value, and 
innovation in health care through technical innovations. Supporting 
the emergence of AI in medicine is the maturation of 3 pillars. First, 
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of limited utility. Comprehension of written language 
requires knowledge of concepts and their synonyms, 
grammar, the relationships between phrases, and tempo-
ral references. For example, consider using office notes to 
identify patients with active fistulizing Crohn’s disease and 
encountering this sentence: “We had concerns that perii-
anal disease was present, but T3 MR–pelvis was negative.” 
Concluding the absence of fistulizing disease is intuitive 
for a person but complex for machines (Figure 1). NLP 
information extraction and inference of document mean-
ing begins with text preprocessing, including spelling 
and punctuation cleaning or stripping. Then, concepts 
or their synonyms are identified, including anatomy, 
symptoms, diagnostic tests, medications, or procedural 
topics, typically through a process called named entity 
recognition using public or commercial concept reference 
libraries. Sentences or phrases are then broken down into 
grammatical elements using a part-of-speech analysis 
to determine if the word or phrase is a past participle, 
preposition, noun, or interrogative; this information is 
used to link concepts. Using these elements, analytic tech-
niques such as hidden Markov models or support vector 
machines can be employed to infer meaning of the phrase 
for information extraction.

NLP uses complex rules-based methods and machine 
learning strategies, in conjunction with publicly avail-
able analytic resources and reference libraries, to aid in 
AI understanding of medical documents. The National 
Library of Medicine supports a continually updated 
medical metathesaurus called the Unified Medical Lan-
guage System, which contains a hierarchical listing of 
medical concepts, including anatomy-, symptomatology-, 
pathology-, and medication-related terms that serve as a 
concept reference. Several open-source toolkits provide 
software packages to help with grammatical analysis for 
relationship linkage, negation and affirmation detection, 
and logic inference. A commonly used coding resource is 
the Natural Language Toolkit (Python). However, other 
open-source software packages requiring less coding 
knowledge are available, including the clinical Text Anal-
ysis and Knowledge Extraction System (Apache).2 The 
Clinical Language Annotation, Modeling, and Processing 
Toolkit developed at the University of Texas Health Sci-
ence Center at Houston offers a graphical user interface 
to design NLP tasks for medical information retrieval.3 
Successive iterations of NLP technology are increasingly 
user-friendly and designed for noncomputer scientists 
(eg, physicians) to build NLP tools to suit their needs.

Early applications of NLP in gastroenterology 
include aiding clinical workflows, facilitating quality 
assurance practices, and improving clinical phenotyp-
ing. Imler and colleagues developed NLP systems to 
extract information regarding colonic adenomas from 

high volumes of instantaneously available information 
and outcomes are now available as a result of the digiti-
zation of clinical, laboratory, and imaging medical data 
into electronic health records (EHRs). Second, machine 
learning can now extract meaningful information from 
unstructured data sources, including medical images and 
office notes, at speed and scale. Finally, modern machine 
learning analytics are better suited to aggregate and pro-
cess the diverse types of data encountered in medicine to 
predict outcomes and provide new physiologic insights. 
These advances in medical information acquisition and 
analytics have resulted in computational techniques being 
more useful than ever in medicine.

As a specialty reliant upon imaging, gastroenterology 
is well-suited to leverage the opportunities afforded by AI. 
Advances in machine vision have led to improvements in 
automated detection, description, and quantification of 
disease features on endoscopy. Familiar applications of AI 
in gastroenterology include replicating expert-level detec-
tion of colonic polyps, distinguishing benign from malig-
nant tissue without histology, and grading disease severity. 
Other technologies beyond image recognition will power 
AI in the coming years for use in research, population 
health, and day-to-day clinical care. This article intro-
duces AI technologies used in gastroenterology, including 
natural language processing (NLP) for extracting know-
ledge from text, neural networks for image analysis, and 
machine learning for predictive analytics, and includes a 
nonexhaustive list of example applications.

Automated Text Analysis Using Natural 
Language Processing

Text documents, including specialist office notes, pathol-
ogy and radiology results, and even patient telephone 
and e-mail notes, are rich sources of clinical information. 
These documents offer far more detail on phenotype, 
symptom severity, and patient behavior than what is 
captured by diagnostic codes, laboratory results, and 
medication orders alone.1 However, unlike administrative 
billing codes and laboratory data, which are structured 
and readily available, text information is trapped within 
documents. Conventional methods of chart review for 
extracting and organizing information from documents 
are time-consuming, expensive, and error-prone. The 
ability to intelligently and automatically collect informa-
tion from text documents, known as NLP, is an emerging 
AI technology that will be relevant to gastroenterologists.

NLP is a collection of computational approaches to 
automate the extraction and transformation of informa-
tion from text documents into usable structured datasets 
better suited for analysis. Understanding language is a 
complex task, and simple keyword or phrase searches are 
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colonoscopy and pathology reports for the purpose of 
automating both adenoma detection rate calculations and 
guideline-based cancer surveillance recommendations.4 
In 750 paired colonoscopy and pathology text reports 
from 13 different centers, NLP performance for auto-
mated extraction of adenoma data was excellent, with an 
accuracy of 94.6% to 99.6% for classifying the histologic 
lesion type, 87.0% to 99.8% for lesion localization, and 
92.0% for correct adenoma count. Groups have also used 
NLP to automatically detect endoscopic quality measures 
using report documents. NLP automatically extracted 
19 different quality measures of colonoscopy (eg, cecal 
intubation, withdrawal time, bowel preparation), with an 
overall accuracy of 89% compared to experts across all 
quality measures.5 A similar study of 13 quality measures 
from 24,674 documents on endoscopic retrograde chol-
angioscopy reported NLP accuracy of 84% to 100%.6

NLP has been shown to improve the accuracy and 
validation of diagnoses assigned to patients. In inflamma-
tory bowel disease (IBD), diagnostic International Clas-
sification of Diseases (ICD) codes have been shown to 
have an accuracy of only 69% compared to manual expert 
document review.7 Automated NLP systems increase the 
accuracy of IBD diagnosis in large datasets to 97%, rep-
resenting a 12% improvement in classification accuracy 
over optimized administrative data.8 Similar results for 
improving diagnostic accuracy have been reported for 

liver diseases, where NLP methods outperformed both 
ICD codes and free text search for correctly distinguishing 
nonalcoholic fatty liver disease from other liver diseases, 
as assessed by F2 scores (NLP, 0.92; ICD, 0.34; free text 
search, 0.81).1 Finally, NLP may automatically capture 
the character and severity of symptoms. In 4108 IBD 
patients, NLP models identified not only the presence of 
extraintestinal manifestations but their degree of activity, 
with an overall sensitivity, specificity, and accuracy of 
81.8%, 92.9%, and 91.2%, respectively.9

NLP may provide a new information source to 
power future predictive analytics and decision-making 
tools, although significant limitations remain. Perfect 
NLP is a herculean effort considering the complexity 
of language, variation in documentation style between 
physicians, and the simple fact that clinical notes may be 
incomplete or incorrect. Research examining extraintes-
tinal manifestation activity classification in IBD found 
that between 15.4% and 54.2% of physician notes were 
determined to be ambiguous,9 and the presence of quality 
measure documentation in colonoscopy reports varied 
from 14.6% to 86.1% between hospitals.10 Hypotheti-
cally perfect automated document review using NLP is 
still subject to the quality and completeness of the source 
documents. Despite these barriers, NLP implementation 
will continue to expand in research, clinical care, and 
education, with speculative expectations of what the 

Figure 1. A conceptual general description of natural language processing (NLP). In this example, the NLP task is to determine 
whether a document indicates the presence or absence of fistulizing Crohn’s disease. First, relevant concepts and their synonyms—
here, it is perianal disease (disease complication) and diagnostic tests (MR imaging of the pelvis)—must be identified, and 
misspellings (periianal) and conceptual synonyms (perianal disease’s relationship to fistulizing disease) must be detected. Second, 
affirmation and negation concepts (the MR test was negative) must be identified. Third, temporal references, including prior, 
present, was, and had, must be identified. Finally, grammatical understanding based on part-of-speech analysis is applied to 
determine the relationships between concepts, negation and/or affirmation phrases, and temporal references. Complex NLP 
analytics attempt to detect hedging or suspicion statements to identify and quantify an author’s documented uncertainty regarding 
related concepts.

MR, magnetic resonance.

Concept

Affirmation

Negation

Hedging/ 
suspicion

“We   had concerns    that 

  periianal disease    was    present   , 

but T3   MR–pelvis    was   negative   .”
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future holds. Automated outside document review, or 
scanning through thousands of pages of records to quickly 
find and organize information relevant to gastroenterol-
ogists, is likely to be built into EHRs. Groups are also 
exploring the application of NLP AI chatbots to collect 
patient symptom and history information as well as its 
application to student training, with aspirational goals of 
ultimately providing therapeutic advice.11 Finally, NLP 
methods are being used for sentiment analysis to discern 
a patient’s or physician’s emotional tone in e-mails, text 
messages, transcribed telephone notes, and social media 
posts.12

Automated Image Analysis and Recognition 
Using Machine Vision

Similar to the wealth of information trapped within 
text, abundant information is also found within clinical 
imaging, but extracting it at scale is tedious or impossi-
ble. Machine vision, also known as computer vision, is 
a series of computational methods used for automated 
image analysis. Machine vision is garnering attention for 
its ability to reproduce expert-level interpretation of med-
ical imaging with excellent performance and high speed. 
In gastroenterology, examples of machine vision include 
detecting colonic, gastric, and esophageal findings; distin-
guishing dysplastic from benign lesions; and grading the 
severity of mucosal damage from endoscopic images with 
comparable performance to experts.

The mechanics of machine vision involve using large 
sets of images that have been labeled or annotated by 
expert reviewers for the presence, absence, or location of 
a finding of interest to train and then test computational 
models aimed at replicating expert performance. Modern 
machine vision methods utilize artificial neural networks, 
which analyze data and identify patterns similar to the 
interconnectivity of natural biologic neural networks. 
Images are subsampled into smaller groups of pixels, 
which are then transformed or convolved by filters analyz-
ing specific image characteristics called layers. Layer filters 
used early in the neural network detect simple image char-
acteristics, such as color intensity or high-contrast edges 
and boundaries, but deeper layers become increasingly 
more complex, analyzing abstract features. Increasing 
filter complexity in deeper layers is what is referred to as 
deep learning. The interactions between the output of the 
convolutions of each layer are aggregated and analyzed to 
determine quantitative patterns that are associated with 
the expert label, such as the presence of a polyp; this is 
called a convolutional neural network (CNN; Figure 2). 
The CNN is then tested on images that were unseen in 
training to evaluate its performance compared to that of 
experts. While neural networks can be used with many 

types of data, they have particular advantages in handling 
images.

Endoscopy can be revolutionized by machine vision, 
and mounting research is providing example applications, 
principally in replicating expert-level interpretation and 
judgment. Numerous examples of automated polyp 
detection using endoscopic still images and real-time 
video are now available, with accuracy improving from 
approximately 70% over the last 5 to 10 years to more 
than 90% in more recent studies using modern CNNs.13-15 
In a prospective study of 1000 patients undergoing colo-
noscopy, machine vision assistance resulted in a small but 
significant increase in the adenoma detection rate (34% vs 
28%; P=.03), although most additionally detected polyps 
were diminutive.16,17 Beyond detecting polyps, machine 
vision can analyze sophisticated endoscopic image fea-
tures that are difficult to standardize and challenging for 
human operators to learn. Using narrow-band imaging, 
researchers trained a CNN classification system to dis-
tinguish small adenomas from hyperplastic polyps with 
an accuracy of 94% (95% CI, 86%-97%).18 Similarly, 
endocytoscopic systems, which provide up to 520-fold 
magnification of the mucosal surface, offer rich histo-
logic information that is hindered by the challenges of 
interpretation by nonexperts. CNN models have matched 
endocytoscopic experts in image interpretation accuracy 
for distinguishing polyp histology (96.0% vs 94.6%; 
P=.141), but notably could substantially outperform 
gastroenterology trainees (96.0% vs 70.4%; P<.0001).19 
Finally, despite the performance of AI image recognition, 
some gastroenterologists have questioned the incremental 
value added by adopting AI technologies in endoscopy.20 
Highlighting a study assessing the impact of AI on clinical 
decision-making, Jin and colleagues demonstrated that a 
machine vision assistance system improved the accuracy 
of novice endoscopists’ discrimination of hyperplastic 
from adenomatous polyps from 73.8% to 85.6% (P<.05), 
which is similar to the accuracy of experts (89.0%; 
P=.102).21

When tasked with other clinical image recognition 
tasks beyond the detection of polyps, machine vision has 
demonstrated similar approximation of expert interpreta-
tion for the detection of dysplasia in Barrett esophagus,22 
as well as both small bowel angioectasias and ulcerations 
on video capsule endoscopy with more than 95% accu-
racy.23-25 Proof-of-concept studies support the potential 
for automated CNN models to replicate endoscopy grad-
ing of ulcerative colitis with similar agreement compared 
to expert reviewers (k=0.86 vs k=0.84) for exact Mayo 
endoscopic score, translating to an area under the curve 
(AUC) of 0.97 for distinguishing remission from active 
disease.26 Another group reported similar results using the 
Ulcerative Colitis Endoscopic Index of Severity score, but 



Gastroenterology & Hepatology  Volume 16, Issue 7  July 2020  345

A R T I F I C I A L  I N T E L L I G E N C E  I N  G A S T R O E N T E R O L O G Y

Figure 2. Basic concepts of convolutional neural networks for image classification. An image is subsampled into groups of pixels 
to facilitate analysis, as demonstrated by the yellow rectangle scanning the image to generate smaller image partitions of equal 
size. Subsampled images are then passed through analysis layers. Layers contain image filters designed to detect image properties. 
There can be dozens or hundreds of layers with filter properties, including color intensity, vertical edges, horizontal edges, and 
textures, with more complex filters in deeper layers. In each subsample of the image, the degree of closeness to the filter properties 
is calculated; this is the convolution. The network of convolutions can then be analyzed for patterns of interconnected features 
associated with an overall image classification provided by an expert. For further technical detail, see the article by Liu and 
colleagues46 and the accompanying commentary.
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added that CNN-based deep learning analysis of endo-
scopic still images could predict histologic remission with 
92.9% accuracy, highlighting the potential for inferring 
pathologic activity from endoscopic image analysis.27

Automated image analysis applications are equally 
relevant in gastrointestinal radiology and pathology. 
Outside of classifying images (eg, dog vs cat; adenoma 
vs hyperplastic polyp), machine vision can also segment 
images into their component parts using CNN meth-
ods. In Crohn’s disease, researchers piloted automated 
segmentation of enterography studies to collect tedious, 
but clinically important, bowel measurements, includ-
ing wall thickness, dilation, and lumen diameter with 
indistinguishable agreement compared to paired expert 
radiologists.28 Using automatically extracted measure-
ments, this group also predicted radiologist judgment on 
classifying disease as stricturing vs nonstricturing with an 
accuracy of 84.4% to 87.6%. Similar segmentation con-
cepts have been applied to gastrointestinal pathology and 
interpretation of digitized images from histologic slides. 
In a prospective study of 102 children from 3 countries, 
CNN models automatically differentiated celiac disease, 
environmental enteropathy, and normal cases using duo-
denal biopsy images with a case detection of 93.4% and 
a false-negative rate of 2.4%.29 Interestingly, the CNN 
model was able to indicate the regions of the pathology 
slide that resulted in the prediction. The capability to 
display regions of clinical or medical interest on an image 
affords opportunities in biologic mechanism and drug 
discovery.

Expected near-term roles for machine vision in gas-
troenterology surround themes of lesion detection assis-
tance, quality assurance, and standardization of severity 
grading to improve reliability, interobserver agreement, 
and time efficiency. Computer-assisted polyp detec-
tion systems are likely to be directly incorporated into 
next-generation endoscopy hardware, potentially with 
histology inference systems to distinguish benign from 
dysplastic lesions, making high-confidence resect-and-
discard practices a reality. Colonoscopy quality assurance 
for features such as bowel preparation and provider-level 
adenoma detection rate are both likely to be automated 
using the discussed technologies.30 Video capsule endos-
copy review should be expected to be augmented by AI 
lesion detection, with 1 study reporting reduction in 
review time to only 3 to 4 minutes compared to 40 to 50 
minutes without AI assistance.23

Machine vision applications to date have impressive 
performance in replicating expert interpretations, but 
many important limitations remain. Expert opinion 
is not identical. Further, all current AI machine vision 
systems will incorporate any bias, subjectivity, and vari-
ation that is contained in the ground truth. Great care 

in  standardizing and qualifying the reference sets used 
as the gold standard for training AI will be critical and 
should involve regulatory, professional society, and 
practicing physician stakeholders. Work from the AI4GI 
academic-commercial collaborative provides an example 
of the degree of discrepancy between expert endoscopic 
and histologic opinion in colonic polyp interpretation, as 
well as opportunities for AI methods to aid and adjudicate 
disagreements.31 In 644 biopsied colonic polyps, disagree-
ment of endoscopy and pathology diagnosis occurred in 
28.9% of cases. The authors highlight that pathology is 
hindered due to sampling or histology processing artifacts 
and may not provide a superior ground truth compared 
to endoscopy due to these limitations. Analytic methods 
may be able to merge the strengths of expert assessments in 
histology, endoscopy, and molecular science for improved 
disease assessments as an ensemble opinion rather than a 
single reference truth source, changing our concepts of 
reliance on a singular gold standard.

Despite real-world images and video having great 
variation in collection and digitization methods and 
image quality, as well as the potential for physiologic noise 
including debris, excessive stool, iatrogenic bleeding, and 
anatomic variation, most training and testing datasets 
are carefully crafted and are of uniform high quality. 
Next-generation machine vision methods will need to 
account for real-world variation and noise without the 
need for painstaking cleaning and labeling to advance 
current AI capabilities. Early examples include work in 
Barrett esophagus developing point-of-care visual analysis 
systems to identify dysplastic tissue.32 Rather than using 
optimal exemplar still images or simply providing classi-
fication alone, an automated esophageal analysis system 
used in a 14-patient pilot study distinguished nondysplas-
tic Barrett esophagus from early adenocarcinoma using 
real-time endoscopic streams and also localized the lesions 
to aid resection efforts with an accuracy of 89.9%.32 These 
advancements in development may power the next wave 
of image-driven technologies in gastroenterology, includ-
ing improved histologic inference, therapeutic monitor-
ing, comprehensive disease assessments, and, eventually, 
robotic endoscopic procedures.33

Modeling Data to Predict Outcomes  
Using Artificial Intelligence Analytics

Improvements in computational analysis of large, 
high-quality datasets are powering predictive models 
for clinical outcomes, physician behavior, and patient 
behavior in gastroenterology. Most predictive models rely 
on a dataset in which an outcome, event, impression, 
or judgment is known for a given observation. Multiple 
machine learning methods can be used, with common 
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examples including artificial neural networks, support 
vector machines, and random forest techniques; their 
technical functions are summarized in several reviews.34,35 
Ultimately, these methods optimize the classification of an 
event, which in clinical settings is often a future outcome 
(eg, survival or therapeutic response). While machine 
learning models do not always outperform traditional sta-
tistical methods such as logistic regression, they are better 
suited to manage real-world data, where information may 
be missing, be imbalanced, or contain many variables.35

Predicting therapeutic response is challenging and 
often imprecise, but machine learning models of IBD 
outcomes provide examples of AI capabilities to aid gas-
troenterologist decision-making. Using data from a phase 
3 clinical trial of vedolizumab (Entyvio, Takeda) in ulcer-
ative colitis, random forest ensemble models combining 
baseline and week 6 clinical and laboratory data were 
able to predict corticosteroid-free endoscopic remission 
at week 52 with an AUC of 0.73 (95% CI, 0.65-0.82).36 
Similarly in Crohn’s disease, machine learning models 
using baseline and week 8 data from phase 3 trial data 
for ustekinumab (Stelara, Janssen) predicted biologic 
responders beyond week 42 with an AUC of 0.78.37 
AI may also aid with personalizing medication dosing. 
Among thiopurine users with IBD, machine learning 
models predicted future clinical and biologic response 
in IBD better than thiopurine metabolite levels (AUC, 
0.79 vs 0.49) using only serial complete blood counts 
and comprehensive metabolic panels.38,39 Clinical out-
comes in other domains also show utility for improving 
existing clinical predictions. Machine learning models 
can predict the 1-year survival rate in cirrhotic patients 
with 90% accuracy, as well as the probability of rapid 
hepatitis C virus progression to advanced fibrosis.40 Neu-
ral networks have predicted survival duration following 
liver transplantation with improved results compared to 
traditional regression models (86.4% vs 80.7%), although 
the margin was minimal.41 Similar applications of AI are 
being studied for a broad range of conditions, including 
predicting future response to neoadjuvant chemotherapy 
in rectal cancers42 and recurrent bleeding from peptic 
ulcers,43 with substantial improvement over traditional 
statistical methods.

In the near future, gastroenterologists can expect a 
multitude of AI-powered prediction models and clinical 
decision support tools, likely built into many EHRs. Some 
may be very useful, others may be suspect, and many will 
predict outcomes that are already known to be true. As 
EHR adoption increases and automated extraction of 
information from text and imaging improves, so too will 
the quality, utility, and value of AI predictive analytics for 
virtually any condition where a dataset can be generated. 
Further, AI models will have the capability to continually 

update both predictions and the models themselves in real 
time. Key issues facing the implementation of AI-decision 
support tools include qualification processes, audit of pre-
dictive performance, and the evolving degree and types of 
oversight recommended by regulatory agencies.

Challenges to Artificial Intelligence 
Implementation in Gastroenterology

Anticipation for AI solutions in gastroenterology is pal-
pable. However, numerous issues need resolution before 
implementing AI into clinical decision-making. First, 
incorporating AI fundamentals into medical training 
and continuing professional education will be essential. 
Technologic advances in automation of AI system design 
will soon allow physicians to design custom AI solutions 
without the assistance of computer engineers.44 Second, 
safety is of paramount importance and, although machine 
learning assistance aims to improve the quality and con-
sistency of care, AI-derived clinical actions, diagnoses, or 
prognoses have the potential to harm patients. Regulatory 
agencies should be involved in supervising both the val-
idation of AI technologies as well as providing oversight 
for implementation. The US Food and Drug Administra-
tion has published its Digital Health Innovation Action 
Plan detailing the handling of AI through the lens of 
software as a medical device, which will be distinct from 
regulatory guidance for traditional mechanical devices or 
pharmaceuticals.45 Additional practical considerations are 
verification of AI reliability in different health care set-
tings as well as intersystem interoperability, both of which 
will be important performance metrics for automation 
systems. AI will require access to large amounts of data, 
likely to be interchanged between systems, highlighting 
the need for new cyber security practices to prevent expo-
sure of personally identifiable health information and 
tracking the use of an individual’s information. Finally, 
legal considerations of who is responsible for the quality 
of AI systems, as well as the consequences of following, 
or perhaps not following, AI predictions have yet to be 
determined. Liability for untoward patient events may be 
held by physicians, technology vendors, or both.

Conclusion

Both well-qualified and potentially insufficiently vali-
dated varieties of AI may arrive in the coming years to 
the gastroenterology space. Most near-term AI image 
analysis technology will be tasked with replicating expert 
interpretation of endoscopic features, pathology slides, 
and cross-sectional imaging. Potential early introductions 
of AI in gastroenterology may be in the form of rapid 
preliminary interpretations, automated second opinions 
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for consensus of specialist judgment, visual assistance 
systems for endoscopy, and standardization of disease 
activity grading in clinical trials. Similar to the teleradiol-
ogy and digital pathology movements of the last decade, 
AI applications in telehealth may be of greatest value in 
low-resource areas and are anticipated to focus on digital 
imaging. AI may increase efficiency, reduce the volume of 
tedious tasks, improve clinical outcomes, and, if imple-
mented correctly, could reduce burnout and enhance the 
time shared between physicians and patients. The promise 
of AI will require new collaborations between medical 
specialists and engineers, rigor in validation and testing, 
and an open mind for changing the practice of gastroen-
terology for the better.
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