Sleep and Inflammatory Bowel Disease: Exploring the Relationship Between Sleep Disturbances and Inflammation

Jami A. Kinnucan, MD, David T. Rubin, MD, and Tauseef Ali, MD

Dr Kinnucan is a gastroenterology fellow and Dr Rubin is a professor of medicine and co-director of the Inflammatory Bowel Disease Center at the University of Oklahoma Health Sciences Center in Oklahoma City, Oklahoma, USA. Dr Ali is an assistant professor of medicine and the director of the OU Physicians Inflammatory Bowel Disease Center at the University of Oklahoma Health Sciences Center in Oklahoma City, Oklahoma, USA. Address correspondence to: Dr Tauseef Ali, 201 St. Young Boulevard, WP 1345 Oklahoma CIty, OK 73104; Tel: 405-271-5428; E-mail: Tauseef-ali@ouhsc.edu

Abstract: Sleep disturbances are associated with a greater risk of serious adverse health events, economic consequences, and, most importantly, increased all-cause mortality. Several studies support the associations among sleep, immune function, and inflammation. The relationship between sleep disturbances and inflammatory bowel disease is complex and not completely understood. Sleep deprivation can lead to increased levels of inflammatory cyto-kines, including interleukin (IL)-1, IL-6, tumor necrosis factor-α, and C-reactive protein, which can lead to further activation of the inflammatory cascade. The relevance of sleep in inflammatory bowel disease has recently received more attention. Several studies have shown that patients with both inactive and active IBD have self-reported sleep disturbances. Here, we present a concise review of sleep and its association with the immune system and the process of inflammation. We discuss the studies that have evaluated sleep in patients with IBD as well as possible treatment options for those patients with sleep disturbances. An algorithm for evaluating sleep disturbances in the IBD population is also proposed. Further research is still needed to better characterize sleep disturbances in the IBD population as well as to assess the effects of various therapeutic interventions to improve sleep quality. It is possible that the diagnosis and treatment of sleep disturbances in this population may provide an opportunity to alter disease outcomes.

The pathogenesis of inflammatory bowel disease (IBD), an immune-mediated chronic inflammatory disease of the intestinal tract, is complex and has been associated with several environmental factors besides genetic mutations and immune system defects. An association with smoking and appendectomy has been seen in the pathogenesis of IBD. There has been increasing interest in the roles that vitamin D levels, use of medications (eg, nonsteroidal anti-inflammatory drugs, and oral contraceptives), prior exposure to antibiotics, dietary com-position, depression, psychologic stress, and geographic variation play in disease modification. In addition, a recent avenue of study has been on whether sleep disturbances and sleep deprivation is a potential environmental risk factor of IBD. According to the Centers for Disease Control and Prevention, approximately 70 million Americans have chronic sleep problems. Some studies have reported that the sleep deprivation has been increasing over time, as people are sleeping fewer hours than they were 25 years ago. In the modern era, increasing work demands and shifting work schedules are major causes for chronic sleep deprivation. The impact of shift work on health can be seen by the increase in sleep disorders, gastrointestinal (GI) diseases (eg, colitis and peptic ulcer disease), and cardiovascular diseases in the population. In the era of increasing prevalence of autoimmune conditions, researchers have asked important questions about how sleep quality is affecting health, especially in terms of effects on immune system regulation. Increasing sleep deprivation has been shown to increase the risk of infections and activate the immune cascade. Sleep deficiency also has been linked to an increase in all-cause mortality in young adults in addition to an increase in the risk of obesity, diabetes, and cardiovascular disease. Although lack of sleep might be a contributing factor to global health issues, researchers in the IBD community have begun to look at the effects of sleep quality on disease and outcomes. A large retrospective study looking at over 12,000 German workers found that those who worked long or irregular hours had an increased prevalence of IBD compared with those who worked regular hours. In published studies, at least 50% of patients with inactive IBD have reported poor sleep quality; this percentage is even greater in those patients with active disease. The high prevalence of sleep disturbances in these studies raises many questions about the role that sleep and sleep quality play in disease activity and management. Several studies would suggest that there is an increased risk of active disease in those with sleep impairment or an increased risk of sleep impairment in those with active disease; the direction of the relationship has not been well established. The Basics of Sleep

Humans sleep an average of 8 hours per night and have an average life expectancy of 77 years. This means people sleep at least one-third of their lives. In the past 60 years, we have come to realize that sleep is not merely a passive state in which we just close our eyes and shut down our body functions and rest; rather, it is an active state with restorative properties. Human sleep is divided into 2 states: rapid eye movement (REM) sleep and non-REM (NREM) sleep. REM sleep accounts for approximately 20% of total sleep time in adults, and it is the stage in which most dreaming occurs. NREM sleep accounts for the other 80%, and it is broken down into 4 stages. Sleep onset occurs after a certain latency period, which varies from person to person, and initiates stage 1, progresses to deeper stages of sleep. After stage 4, sleep progresses into REM sleep and then back to stage 1. This cycle repeats itself every 90 minutes. Prior to awakening, the percentage of REM sleep is greater than that of NREM sleep. Most people awake directly from REM sleep. Stages 3 and 4 are often referred to as slow-wave sleep (SWS) and are the most restorative stages of sleep and where the greatest impact from immune regulation happens. The effects of SWS can lead to a decrease in colon contractility, which is considered the “rest period” for the colon, so alterations in this stage of sleep can have direct effects on GI physiology, including diminished mucosal integrity. Inadequate sleep or sleep deprivation can lead to daytime tiredness, irritability, and possible decreased work productivity. As people are sleeping less, the most significant changes are seen in the duration of SWS and an increase in sleep fragmentation. Recent studies have also shown that the sleep-wake cycle, also known as the circadian rhythm, is controlled by a central “clock” in the brain as well as peripheral GI clocks. Different environmental factors, such as light, food, chemicals, and genes, modulate the functions of these clocks.

The quality of sleep can be evaluated by both subjective instruments and objective measurements. Several tools have been designed to evaluate sleep disturbances in humans. A recently used instrument is the Pittsburgh Sleep Quality Index (PSQI), in 1989. This validated instrument has a nearly 90% sensitivity and specificity to distinguish good sleepers from poor sleepers and has broad clinical and research uses. It is widely being used in studies that look at sleep quality in patients with IBD, irritable bowel syndrome (IBS), gastroesophageal reflux disease (GERD), and thyromyalgia. Bayes and colleagues more recently contributed to a newer sleep assessment tool created for the Patient Reported Outcomes Measurement Information System (PROMIS) to overcome challenges with prior instruments used for self-reported sleep dysfunction. Objective sleep measurement involves use of a nocturnal polysomnography (PSG), which can provide more

Keywords: Sleep, inflammation, Crohn's disease, ulcerative colitis

Gastroenterology & Hepatology Volume 9, Issue 11 November 2013

719
information about biophysiologic changes occurring during sleep. However, PSG is often performed in a sleep laboratory, which takes a patient out of his or her natural sleep environment. In comparison with PSG, the PSQI reflects patients’ sleep patterns over a 30-day period. Given the “first night” sleep effect seen with PSG, various home sleep monitors have been designed to provide more natural sleep assessment over a longer period of time.4 The use of home monitoring utilizes actigraphy technology, which monitors movement during sleep. This technology can be found in various medical sleep devices such as Actiwatch (Phillips) and several commercially available wristwatches, such as UP (Jawbone) and Flex (Fitbit). Although these devices have not been validated against medical-device actigraphy or PSG, people are able to track and analyze their sleep quality at home using this wrist-worn technology.41

Sleep quality assessment is complex and involves the evaluation of several variables, including sleep duration (number of hours spent sleeping), sleep latency (how long it takes to fall asleep), sleep efficiency (hours asleep in bed compared with time spent in bed), and number of sleep arousals (sleep fragmentation). Sleep disturbances can be characterized by chronic sleep deprivation, primary sleep disorders (insomnia, restless leg syndrome [RLS], periodic limb movement disorder, and obstructive sleep apnea [OSA]), and secondary sleep disorders (due to other medical conditions). Although not fully understood, the presence of active disease in IBD can lead to sleep deprivation, which then can lead to further immune activation, creating a vicious cycle for patients.

Sleep and Immunity

The interaction between sleep and the immune system is complex and has been increasingly studied over the past few decades. A close link between sleep and immune function has been observed, and studies have shown that adequate sleep strengthens immune function.42 On the other hand, sleep deprivation has been shown to have negative effects on the immune system. Alterations in sleep patterns can lead to leukocytosis and an increase in natural killer cells, which can lead to increased inflammatory cytokine production.43,44 Interestingly, the cytokines implicated in the regulation of the sleep-wake cycle are also involved in the pathogenesis of chronic inflammatory conditions, including IBD.

Effects of Sleep Deprivation on the Immune System

Sleep deprivation can lead to systemic inflammation as defined by changes in pro-inflammatory cytokines and inflammatory markers. In particular, elevations in interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and C-reactive protein have been seen after sleep deprivation in both animal and human studies.3,94-47 IL-1α and TNF-α, in particular, have been referred to as sleep regulatory cytokines, and their studies looking at their effects suggest that the relationship may be bidirectional.46 In a study of 30 healthy adults undergoing sleep deprivation, a significant elevation in proinflammatory cytokines was found. These findings suggest that sleep deprivation affects cytokines involved in the regulation of sleep-wake cycles and is initially characterized by increased sleepiness that progresses to premature REM episodes. Affected patients are found to have elevated TNF-α and IL-1β levels.47,48 Several studies have looked at the changes in sleep architecture related to viral infection, including rhinovirus, which, contrary to popular belief, is associated with decreased sleep duration.49 The sleep patterns of people with HIV infection are also found to be significantly altered, with studies showing sleep abnormalities in 73% of HIV-seropositive patients.50

Immune Regulation Effects on the Sleep-Wake Cycle

In animal studies, increased levels of IL-1β and TNF-α were associated with an increase in NREM sleep, in particular SWS.50-53 IL-1β also may regulate sleep through a serotonin receptor pathway and, at low levels, induces NREM sleep, but at higher levels, it can cause NREM suppression and sleep fragmentation.50-53 IL-6 plays a central role in the pathogenesis of Crohn’s disease (CD); it mediates acute-phase reactant response and has been shown to suppress REM sleep and promote wakefulness in patients with IBD.40,63 As will be discussed in more detail, patients with active IBD are more likely to have subjective sleep complaints than patients with inactive disease, which supports the role for inflammation in the regulation of sleep-wake cycles.

Nonimmune-mediated Factors in Sleep Regulation

In addition to cytokines, hormones have been shown to play a central role in sleep regulation. Melatonin is made by the pineal gland, and it has multiple neurohormonal functions, including circadian regulation.95,96 The highest levels of melatonin are found within the GI tract and play a central role in the regulation of GI motility, with both inhibitory and excitatory effects.95,97 Another important hormone in sleep regulation is endogenous glucocorticoids, which have been found to be associated with the circadian desynchronization of mucosal inflammation.86 The same group published another study that showed that, after circadian disruption, mice had worsening colonic inflammation and delayed mucosal recovery.29

Sleep, Infection, and Inflammation

The Role of Infection in Sleep Disturbances

Acute infection plays an important role in sleep regulation, and the studies looking at its role likely to have higher infection rates (ie, viral or bacterial, viral or bacterial protozoan) have been shown to result in the alteration of sleep patterns in animals, usually resulting in an increase in SWS following infection.46-49 Sleepiness, caused by the illness, may be used as a means of suppressing sleep-wake cycles and is initially characterized by increased sleepiness that progresses to premature REM episodes. Affected patients are found to have elevated TNF-α and IL-1β levels.47,48 Several studies have looked at the changes in sleep architecture related to viral infection, including rhinovirus, which, contrary to popular belief, is associated with decreased sleep duration.49 The sleep patterns of people with HIV infection are also found to be significantly altered, with studies showing sleep abnormalities in 73% of HIV-seropositive patients.50

Inflammatory Conditions and Sleep

Adequate SWS can attenuate the inflammatory cascade, whereas the presence of a sleep deficit can activate a proinflammatory response.9 King and colleagues demonstrated that longer sleep duration measured by actigraphy was associated with a decrease in the incidence of coronary artery calcification.50 Fifty percent to 70% of patients with RA report sleep disturbances and daytime fatigue.92 Objective evaluation of sleep disturbances in a small sample of patients with RA using PSG found improvement in sleep efficiency and decreased awakenings after initiation of anti-TNF-α therapy.92,93 Many other diseases have been associated with patient-reported poor sleep quality, including asthma, systemic lupus erythematosus, multiple sclerosis, and ankylosing spondylitis.93

Sleep and the Gastrointestinal Tract

Adequate sleep has important effects on GI physiology leading to inhibition of colonic contractility during SWS, with the elimination of propagating contractions leading to colonic inactivity.94 A cross-sectional survey found a strong relationship between self-reported insomnia and the presence of bowel disorders in a Canadian population. This study found a nearly 3-fold increased risk of bowel disorders in patients with insomnia even after adjusting for sex, age, self-perceived stress, and the presence of chronic fatigue syndrome.95 Although an important observation, the causality of these findings is still not very clear. GERD is the most common GI diagnosis in the United States and has been found to be associated with emotional exhaustion and poor sleep quality.96 Researchers have now started to ask important questions about the impact of sleep disturbances on the presence of acid reflux predicted the presence of sleep disturbances. The authors concluded that the use of age-matched controls excluded gender and age effects. The lack of control for other potential confounders and the absence of standardized sleep measurement tools limits the generalizability of the other limitations. Later, another study looked at sleep in the pediatric population and found that 54% (21/41) of pediatric patients with IBD had moderate to severe sleep disturbances. The most common disturbances were morning fatigue on awakening (75%) and sleep fragmentation (53.6%). The study did not find any association between the presence of sleep disturbances and disease activity or current treatment regimen. Although the study was prospective in nature and used a validated mini-sleep questionnaire, its small sample size and lack of information regarding disease activity...
tive sleep complaints among patients with IBS or IBD and patients with IBD.15,87 The study found increasing subjective (using PSQI) and objective (using PSG) sleep disturbances in adult controls, patients with IBS, and patients with IBD.13 The limitations of the first study were the small prospective study that examined subjective and objective measures and confounders, such as corticosteroid use, and over-the-counter medication use.

Sleep Disturbances Increase the Risk of Relapse

A large online survey completed by over 3100 patients in the Crohn's and Colitis Foundation of America Partners IBD cohort found that patients with CD in clinical remission and subjective sleep disturbances (using the PROMIS questionnaire) had a 2.67-fold increased risk of active disease at 6 months.13 Patients with ulcerative colitis (UC) were not found to have this same association. The study also showed an association between disease activity, depression, female sex, and the use of corticosteroids or narcotics with abnormal subjective sleep complaints. The study was limited by the self-reported information on the disease phenotype, treatment, and disease activity. Our group presented the preliminary results of an ongoing prospective study at Digestive Disease Week 2013, looking at patients with IBD (both CD and UC), and found a 3-fold increased risk of disease relapse at 6 months in patients with clinical remission and poor sleep.49 Patients with an abnormal PSQI had a relapse rate of 47% at 3 months and 67% at 6 months compared with 0% at 3 and 6 months in patients with a normal PSQI. Patients with known depression, anxiety, corticosteroid use, and use of over-the-counter medications known to affect sleep were excluded from this analysis. These studies add important information to the current knowledge about sleep and IBD. There is a need for larger prospective studies to confirm the association between poor sleep quality and risk of disease relapse. One such study is ongoing at our center.

Therapeutic Implications of Sleep Quality in Inflammatory Bowel Disease

The above studies highlight the significant impact of sleep on the IBD population and also raise a few important questions: How can we improve sleep quality in patients with IBD? Can current IBD therapies improve sleep quality? Does improving sleep quality improve disease outcomes? Studies in patients with insomnia support the use of cognitive behavioral therapy (CBT) to improve sleep quality,50 but the effectiveness of CBT has not been assessed in the IBD population. If studies looking at behavioral interventions in patients with IBD were able to show improved sleep quality and decreased disease activity, it could be a less invasive and inexpensive means to improve patients’ overall quality of life.

Table. Studies of Sleep Disruption in Inflammatory Bowel Disease

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Study Population(s)</th>
<th>Sleep Measurement(s)</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zimmerman (2005)</td>
<td>Healthy control vs Inactive IBD</td>
<td>MSI</td>
<td>Increased subjective sleep complaints (IBD/IBS) vs healthy controls</td>
</tr>
<tr>
<td>Nachmias et al (2006) (pediatric)</td>
<td>Inactive IBD</td>
<td>Mini-sleep questionnaire</td>
<td>Moderate to severe sleep disturbances, early morning fatigue</td>
</tr>
<tr>
<td>Keefet al (2006)</td>
<td>Healthy control IBS vs Inactive IBD</td>
<td>PSQI, PSG</td>
<td>Increased subjective sleep complaints (IBD/IBS) vs healthy controls</td>
</tr>
<tr>
<td>Rajbharat et al (2007) (pediatric)</td>
<td>Healthy control vs Inactive IBD</td>
<td>PSQI</td>
<td>Poor sleep quality and effect on quality of life in patients with IBD</td>
</tr>
<tr>
<td>Burgio et al (2010)</td>
<td>Inactive IBD</td>
<td>Actigraphy</td>
<td>Decreased sleep efficiency</td>
</tr>
<tr>
<td>Pirinen et al (2010) (pediatric)</td>
<td>Inactive IBD vs Active IBD</td>
<td>Multiple questionnaires</td>
<td>Severe IBD symptoms associated with sleep disturbance</td>
</tr>
<tr>
<td>Grall et al (2013)</td>
<td>Inactive IBD vs Active IBD</td>
<td>Multidimensional Fatigue Inventory vs PSQI, ESS</td>
<td>Active disease increased subjective sleep complaints</td>
</tr>
<tr>
<td>Grall et al (2013)</td>
<td>Inactive IBD vs Active IBD</td>
<td>Multidimensional Fatigue Inventory vs PSQI</td>
<td>Poor sleep quality independently associated with increased fatigue</td>
</tr>
<tr>
<td>Benhayon et al (2013) (pediatric)</td>
<td>Inactive/active CD vs Inactive IBD</td>
<td>PSQI</td>
<td>Poor sleep quality in pediatric depressed CD patients increasing PSQI scores associated with disease activity</td>
</tr>
<tr>
<td>Anmarakshinthan et al (2011)</td>
<td>Inactive IBD</td>
<td>PROMIS online survey</td>
<td>Sleep impairment associated with disease activity</td>
</tr>
</tbody>
</table>

CD, Crohn's disease; ESS, Epworth Sleepiness Scale; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; MSI, multidimensional inventory; PROMIS, Patient-Reported Outcomes Measurement Information System; PSQI, Pittsburgh Sleep Quality Index; PSG, polysomnography.

PSG, the researchers found that 13% of patients with IBD had OSA. This was the first study to further classify sleep disturbances using objective measures. The same group further evaluated the effects of sleep disturbances and quality of life in a larger sample of patients with inactive IBD using a mail-in survey. The subjects with IBD reported significantly prolonged sleep latency, frequent sleep fragmentation, a higher rate of using sleep pills, decreased daytime energy, increased tiredness, and poor overall sleep quality compared with healthy controls. Similar to many other previous studies, this study lacked the objective evaluation of sleep and included other confounding factors. Reliance on self-reported retrospective assessment by patients and their sleep quality was another major limitation. The study was limited by the small prospective study at Digestive Disease Week 2013, looking at patients with IBD (both CD and UC), and found a 3-fold increased risk of disease relapse at 6 months in patients with clinical remission and poor sleep. Patients with an abnormal PSQI had a relapse rate of 47% at 3 months and 67% at 6 months compared with 0% at 3 and 6 months in patients with a normal PSQI. Patients with known depression, anxiety, corticosteroid use, and use of over-the-counter medications known to affect sleep were excluded from this analysis. These studies add important information to the current knowledge about sleep and IBD. There is a need for larger prospective studies to confirm the association between poor sleep quality and risk of disease relapse. One such study is ongoing at our center.

Therapeutic Implications of Sleep Quality in Inflammatory Bowel Disease

The above studies highlight the significant impact of sleep on the IBD population and also raise a few important questions: How can we improve sleep quality in patients? Can current IBD therapies improve sleep quality? Does improving sleep quality improve disease outcomes? Studies in patients with insomnia support the use of cognitive behavioral therapy (CBT) to improve sleep quality, but the effectiveness of CBT has not been assessed in the IBD population. If studies looking at behavioral interventions in patients with IBD were able to show improved sleep quality and decreased disease activity, it could be a less invasive and inexpensive means to improve patients’ overall quality of life.
A proposed algorithm for incorporation of sleep assessment in the management of inflammatory bowel disease (IBD).

The authors have no conflicts of interest to disclose.

References


Figure. A proposed algorithm for incorporation of sleep assessment in the management of inflammatory bowel disease.


