Safety of Proton Pump Inhibitors

Faculty

David A. Johnson, MD
Professor of Internal Medicine
Chief of the Division of Gastroenterology
Eastern Virginia Medical School
Norfolk, Virginia

David A. Peura, MD
Professor Emeritus
Division of Gastroenterology and Hepatology
University of Virginia Health System
Charlottesville, Virginia

Michael F. Vaezi, MD
Director of the Center for Swallowing and Esophageal Disorders
Director of Clinical Research
Vanderbilt University Medical Center
Nashville, Tennessee

Abstract

Proton pump inhibitors (PPIs) are commonly prescribed for the management of upper gastrointestinal tract disorders, and over 2 decades of use have demonstrated that these drugs provide significant clinical benefits with very few serious acute adverse events. However, several recent reports have suggested that short-term and long-term PPI treatment may be associated with certain risks. Specifically, studies have demonstrated a modest magnitude of association (odds ratio <2) between PPI therapy and osteoporotic fractures, micronutrient deficiencies, inhibition of antiplatelet therapy, enteric infections, and pneumonia. In response to some of these studies, the US Food and Drug Administration recently required labeling changes that reflect several of these potential risks. While available studies suggest a possible association between various risks and PPI use, demonstrating a causal link is difficult due to the absence of randomized controlled studies, heterogeneity among available studies, inconsistency of findings, and presence of confounding factors. As with all drug therapies, therefore, clinicians need to weigh the benefit of the therapy against any potential risks. Overall, the absolute risk for the majority of patients is small, and the benefits of these drugs often outweigh their potential risks.
Target Audience: This activity has been designed to meet the educational needs of gastroenterologists, pediatric gastroenterologists, colon/rectal surgeons, and high-prescribing primary care physicians.

Statement of Need/Program Overview: The management of gastro-esophageal reflux disease (GERD) is a considerable therapeutic challenge for clinicians. Advances in diagnosis, evaluation, treatment, predictors of response, and emerging data regarding current and novel therapies for the treatment of GERD continue to evolve. The overall safety of long-term proton pump inhibitor (PPI) use has also recently come into question, prompting the US Food and Drug Administration to send out a special alert to practicing physicians and patients. Physicians therefore need to be aware of all the variables that can influence treatment choices and outcomes.

Educational Objectives: After completing this activity, the participant should be better able to:
1. Discuss the risk of nutrient malabsorption and/or fracture associated with long-term PPI use.
2. Describe the issues involved in treating patients with concomitant antiplatelet therapy and PPIs.
3. Review current evidence regarding the risk of infection associated with PPI use.

Faculty:
- **David A. Johnson, MD,** is Professor of Internal Medicine and Chief of the Division of Gastroenterology at Eastern Virginia Medical School in Norfolk, Virginia.
- **David A. Peura, MD,** is Professor Emeritus in the Division of Gastroenterology and Hepatology at the University of Virginia Health System in Charlottesville, Virginia.
- **Michael F. Vaezi, MD,** is Director of the Center for Swallowing and Esophageal Disorders and Director of Clinical Research at Vanderbilt University Medical Center in Nashville, Tennessee.

Accreditation Statement: This activity has been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of Postgraduate Institute for Medicine (PIM) and Gastroenterology & Hepatology. PIM is accredited by the ACCME to provide continuing medical education for physicians.

Credit Designation: The Postgraduate Institute for Medicine designates this journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Disclosure of Conflicts of Interest: Postgraduate Institute for Medicine (PIM) assesses conflict of interest with its instructors, planners, managers, and other individuals who are in a position to control the content of Continuing Medical Education (CME) activities. All relevant conflicts of interest that are identified are thoroughly vetted by PIM for fair balance, scientific objectivity of studies utilized in this activity, and patient care recommendations. PIM is committed to providing its learners with high-quality CME activities and related materials that promote improvements or quality in healthcare and not a specific proprietary business interest of a commercial interest.

The faculty reported the following financial relationships or relationships to products or devices they or their spouse/life partner have with commercial interests related to the content of this CME activity:

Method of Participation: There are no fees for participating in and receiving CME credit for this activity. During the period April 2011 through April 30, 2012, participants must read the learning objectives and faculty disclosures and study the educational activity.

PIM supports Green CE by offering your Request for Credit online. If you wish to receive acknowledgment for completing this activity, please complete the post-test and evaluation on www.cmeuniversity.com. On the navigation menu, click on “Find Post-test/Evaluation by Course” and search by course ID 7715. Upon registering and successfully completing the post-test with a score of 70% or better and the activity evaluation, your certificate will be made available immediately. Processing credit requests online will reduce the amount of paper used by nearly 100,000 sheets per year.

Media: Monograph

Disclosure of Unlabeled Use: This educational activity may contain discussion of published and/or investigational uses of agents that are not indicated by the US Food and Drug Administration. Postgraduate Institute for Medicine (PIM), Gastroenterology & Hepatology, and Procter & Gamble Healthcare do not recommend the use of any agent outside of the labeled indications. The opinions expressed in the educational activity are those of the faculty and do not necessarily represent the views of PIM, Gastro-Hep Communications, Inc., or Procter & Gamble Healthcare. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications, and warnings.

Disclaimer: Participants have an implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented in this activity is not meant to serve as a guideline for patient management. Any procedures, medications, or other courses of diagnosis or treatment discussed or suggested in this activity should not be used by clinicians without evaluation of their patient's conditions and possible contraindications or dangers in use, review of any applicable manufacturer's product information, and comparison with recommendations of other authorities.

©2011 Gastro-Hep Communications, Inc. 611 Broadway, Suite 310, New York, NY 10012. Printed in the USA. All rights reserved, including the right of reproduction, in whole or in part, in any form.
Introduction

Since the introduction of omeprazole in 1989, proton pump inhibitors (PPIs) have had a long history of safety and efficacy for relieving symptoms and preventing complications associated with acid-related conditions. In terms of sales, PPIs were the third largest class of drugs in 2009, with more than 110 million prescriptions, and the number of dispensed prescriptions in 2009 was 5% higher than the previous year.1

PPIs are often prescribed to treat peptic ulcer disease and associated complications, such as bleeding, as well as conditions associated with excessive acid production, including nonulcer dyspepsia, gastroesophageal reflux disease (GERD), erosive esophagitis, and Zollinger-Ellison syndrome.2,7 PPIs are also used in combination with antibiotics to combat Helicobacter pylori, as H. pylori infection may play a role in recurring stomach ulcers.2

Seven PPIs are currently available in the United States, several of which are now sold in over-the-counter formulations (Table 1).8 PPIs are prodrugs that suppress the release of gastric acid by blocking the final step in acid production through inhibition of the H+/K+-ATPase (the proton pump).2,9 This selective suppression of gastric acid effectively relieves acid-related symptoms and allows for esophageal healing in many patients. Compared to other acid-suppressing agents, PPIs yield greater acid suppression, faster healing, and more complete symptom relief.10,11

Over 2 decades of clinical use have demonstrated that treatment with PPIs is associated with a low risk of minor adverse events (1–3%).2 The most commonly reported adverse events associated with PPIs include headache (1.3–2.9%), diarrhea (1.5–4.1%), dizziness (0.7%), rash (0.4–1.1%), and nausea (0.015–2.6%); the rates of these side effects vary slightly among the different drugs in this class.2 Overall, these adverse event rates are comparable to the rates observed with placebo or histamine-2 receptor antagonists (H2RAs).12 However, recent data from epidemiologic studies suggest that additional risks may be associated with PPIs, and the US Food and Drug Administration (FDA) has issued alerts warning physicians about these risks.13,14

As with all drug therapies, safety information continuously changes as more data become available. This roundtable was developed to review the current evidence regarding potential safety issues associated with chronic PPI therapy, to raise awareness about these risks, and to discuss how they might affect clinical management of specific cases. In the following pages, 3 expert clinicians provide cases that illustrate major concerns regarding the use of PPIs, present clinical data relevant to each of these cases, and explain how they would manage these patients.

References

Nutrient Malabsorption and Fracture Risk

David A. Peura, MD

Case Report

An active, retired, 67-year-old woman with long-standing GERD presented with questions regarding her current treatment. Five years ago, she had presented with symptoms of heartburn and occasional regurgitation that led to a diagnosis of GERD. She was initially treated with lifestyle changes and an H2RA, but this treatment yielded only partial symptom relief. The patient then started taking a full-dose PPI once daily before breakfast, which resulted in complete symptom relief. An endoscopy performed 4 years ago was normal, with no evidence of erosive esophagitis or Barrett esophagus; because this endoscopy was performed while she was taking a PPI, the native state of her esophagus is unknown. Numerous attempts over the past 4 years to discontinue the PPI or switch back to an H2RA have led to a relatively rapid return of symptoms.

The patient’s history included a hysterectomy that was performed when she was 55 years old (with no subsequent hormone replacement therapy) and a wrist fracture that occurred 5 years ago while skiing. At the time of her wrist fracture, the patient underwent a bone density scan that revealed a normal bone density. At the suggestion of her gynecologist, she began taking supplemental calcium at this time. Current medications include the PPI, 25 mg hydrochlorothiazide daily, and a multivitamin. At the patient’s most recent visit, her vital signs were normal and her general examination was unremarkable.

While researching PPIs prior to this visit, the patient read the new FDA warning about fracture risks associated with these medications, and she was therefore concerned about her current treatment plan. She wanted to know if she should be taking a PPI given her fracture history; if not, she wanted to know what treatment alternatives were available. In addition, she wanted to know how long she could safely continue taking a PPI. She also asked whether she could take specific measures to prevent subsequent fractures.

Risk of Fractures Associated with PPI Use

For years, clinicians have known that fractures—especially hip fractures—are a major cause of morbidity and mortality, especially in people of advanced age. However, the association between acid suppression and fracture risk is controversial. In 2006, a paper by Yang and associates illuminated the potential association between PPI use and increased fracture risk.1 In this large, nested, case-control study of individuals in the United Kingdom, patients who had received PPI therapy for more than 1 year were found to have a significant risk of hip fracture (odds ratio [OR], 1.44; 95% confidence interval [CI], 1.30–1.59). This study also found that the risk of hip fracture increased with higher daily doses of PPIs (OR, 2.65; 95% CI, 1.80–3.90). A similar risk of hip fractures was observed in a large, case-control study of Danish patients.2 This study found that patients treated with a PPI within the previous year had increased risks for any fracture (OR, 1.18; 95% CI, 1.12–1.43), hip fracture (OR, 1.45; 95% CI, 1.28–1.65), and/or spine fracture (OR, 1.60; 95% CI, 1.25–2.04).

Subsequently, a number of studies attempted to confirm this association. Recently, Kwok and associates published a meta-analysis of 12 studies that included over 1.5 million patients.3 In the 4 studies in this meta-analysis that had information on spine fractures, PPI use was associated with an increased risk of fracture (OR, 1.50; 95% CI, 1.32–1.72); analysis of the 10 studies with hip fracture data also showed an increased risk of fracture associated with PPI use (OR, 1.23; 95% CI, 1.11–1.36). Despite the variety of study designs included in this meta-analysis (eg, case-control, cohort), the meta-analysis still found that PPI therapy had a moderate effect on overall fracture risk (OR, 1.20; 95% CI, 1.11–1.30). This finding suggests that PPI therapy does impact fracture risk, but the magnitude of this effect and its clinical relevance remain in question.

Some studies have suggested that the risk of fractures in PPI-treated patients may depend on the drug’s dose or duration of use.1,4 To address this question, a retrospective, matched, cohort study involving Canadian patients looked at the association between continuous PPI use and osteoporotic fractures.4 No statistically significant association was found during Years 1–4 of treatment; however, the risk of hip fractures increased after 5 years of PPI therapy (OR, 1.62; 95% CI, 1.02–2.58), and an even greater risk of hip fractures was observed after 7 years of treatment (OR, 4.55; 95% CI, 1.68–12.29). In contrast, a case-control study by Corley and associates did not observe a consistent increase in fracture risk over time (up to 10 years of cumulative duration). However, the Corley study did find an increase in fracture risk with higher drug doses (≥1.5 pills/day: OR, 1.41 [95% CI, 1.21–1.64]; <0.74 pills/day: OR, 1.12
Clinicians should note that this latter finding may represent a case of confounding by indication, as sicker patients would presumably be treated with higher doses of a drug for longer periods. In fact, the Corley study found that the excess fracture risk associated with PPI use occurred only in patients who had at least 1 other risk factor for fracture. Given the current state of the evidence, clinicians should follow the suggestion of the recent American Gastroenterological Association guideline and reduce drug dose and duration whenever possible.

Despite PPI use being associated with only a modest increase in fracture risk, the FDA nonetheless changed the required labeling for PPIs in May 2010 to include information about this association. While the FDA noted the absence of data from randomized controlled trials, it indicated that the available observational data provided sufficient grounds to issue the warning. The FDA also indicated that fracture risk may be linked to prolonged or high-dose PPI use, even though the evidence remains inconclusive as to whether PPI use is causing the increased fracture risk observed in some studies.

In light of these labeling changes, clinicians must address the question of whether PPI use is appropriate in a patient with a history of fracture. While the data show an increased fracture risk for patients on PPI therapy, this increase is likely modest, and it may have minimal impact on the majority of patients who are otherwise at low risk for fracture. When extrapolating from data derived from a large cohort study of women, it appears that the number needed to treat for harm (NNTH) with a PPI would be 234 per year (range, 156–424) in nondiabetic postmenopausal women (mean age=63.5 years). In nondiabetic postmenopausal women, the spine fracture risk NNTH associated with PPIs would be 915 per year (range, 634–1,425). In a low-risk population, such as younger women or men with healthy bones, the NNTH for PPIs is estimated to be in the thousands.

In light of these findings, the modestly increased risk of fracture associated with PPI use is not a significant issue for most patients. Overall, the fracture risk associated with PPI use has been consistently demonstrated and appears to increase with longer durations of use and/or higher PPI doses, but the magnitude of this effect remains low (OR, <2.0). Thus, this risk may not be clinically significant for the majority of patients. Indeed, the FDA recently announced that over-the-counter PPIs no longer need to carry a warning about the risk of osteoporosis and fractures, as a review of new data found that these risks were primarily associated with prescription-strength PPIs and/or use of PPIs for a duration of 1 year or longer.

In addition to determining the clinical significance of fracture risk, there are several other outstanding issues that still need to be addressed. First, much of the data on this subject comes from observational studies, as no randomized controlled trials assessing PPI use and fracture risk have been performed. Also, researchers studying PPI use and fracture risk often have difficulty controlling for potential confounding variables such as diet, medications, and comorbid conditions. Finally, available data have not yet provided a plausible mechanism for how PPIs affect bone. One possible mechanism is that PPIs affect calcium absorption, although the data examining this mechanism are inconsistent. Other studies suggest that PPIs may affect osteoclast activity, which may influence bone remodeling, but this effect has yet to be demonstrated in humans. Finally, studies have postulated that treatment with PPIs could cause hyperparathyroidism and hypergastrinemia, resulting in decreased bone mineral density, but this theory cannot explain the short-term effects of PPIs on bone metabolism and thus remains controversial. Overall, researchers have yet to find strong evidence to support a role for PPIs in accelerated osteoporosis, dietary calcium or vitamin D malabsorption, or direct effect on human bone.

Nutrient Malabsorption

In addition to potentially increasing the risk of fracture, long-term use of PPIs may also be associated with micronutrient deficiencies in vitamin B₁₂, iron, and/or magnesium. As with the association between PPI use and fracture risk, however, the data linking PPI use and micronutrient deficiencies are sometimes conflicting, and their clinical significance are unclear.

Gastric acid facilitates the absorption of vitamin B₁₂. Thus, PPI-induced hypochlorhydria may interfere with the proteolysis and release of B₁₂ from dietary protein, or it may promote small bowel bacterial overgrowth that could cause low B₁₂ levels. Whether long-term PPI use actually lowers B₁₂ levels remains in debate, however, as available reports are conflicting. Fortunately, true deficiencies of B₁₂ are rare and typically occur only in elderly patients. Also, if a patient’s B₁₂ levels are a cause for concern, oral supplemental B₁₂ can be administered. As PPIs do not cause true malabsorption but only impair the release of B₁₂ from dietary protein, absorption of oral supplemental B₁₂ should be unimpaired.

Iron deficiency may also be associated with PPI use, since gastric acid is required for nonheme iron absorption. Whether PPI use affects iron levels is unclear, however, as data on this association are conflicting. One study examining long-term PPI therapy in patients with Zollinger-Ellison syndrome did not find a connection with iron deficiency. On the other hand, a study of patients with hemochromatosis found that short-term PPI therapy resulted in a significant reduction in the absorption of nonheme iron, and long-term PPI therapy reduced phlebotomy requirements. Overall, the impact of PPI therapy on iron absorption has yet to be definitively established.
absorption in patients with normal iron levels and normal iron absorption is unclear. While approximately 60% of dietary iron is nonheme iron, most individuals’ diets will provide patients with sufficient iron even if they do not have adequate acid levels to reduce nonheme iron. In addition, gastric acid is unnecessary for the absorption of medicinal iron supplements, as this iron is already in a reduced form. Therefore, iron malabsorption should not be a critical issue as long as patients receive sufficient dietary iron or take iron supplements.

Finally, another nutrient that may be affected by PPI therapy is magnesium; hypomagnesemia is a very rare, but serious, risk of PPI therapy.\(^1\) While the mechanism for PPI-induced hypomagnesemia is unknown, it does not appear to involve gastrointestinal malabsorption or renal magnesium wasting.\(^12\) If hypomagnesemia occurs, discontinuing PPI therapy will allow magnesium levels to return to normal. However, if patients are rechallenged with a PPI after correction of the magnesium deficiency and hypomagnesemia quickly recurs, then PPI therapy may be contraindicated in such individuals. Despite the rarity of this finding, the FDA issued a warning to healthcare professionals and the public in March 2011 indicating that prescription PPIs may cause low serum magnesium levels if taken for prolonged periods (in most cases, longer than 1 year).\(^15\) This warning suggested periodic monitoring of magnesium levels in patients taking medications such as digoxin, diuretics, or other drugs that may carry an increased risk of, or by themselves cause, hypomagnesemia.

Conclusion

In summary, PPI therapy is associated with a low absolute risk for fractures or nutrient malabsorption. Nonetheless, patients who require PPIs should be counseled regarding these potential risks, and it is always good practice to use PPIs at the lowest dose and for the shortest time necessary to control symptoms.

For the patient presented in the aforementioned case, the risk-benefit analysis supports continued PPI therapy, as the patient’s symptoms recur if she stops the PPI. The patient had never tried intermittent or lower-dose use of the PPI, but these options might be suitable treatment alternatives, particularly in the absence of erosive esophagitis. To address the patient’s concerns about preventing subsequent fractures or decreasing her risk of fractures, she should talk to her primary care physician about routine bone density scanning, and she should be managed appropriately based on these results. Calcium supplements may be warranted, but they should be administered in a soluble form, since insoluble calcium may be more difficult to absorb in the setting of concomitant PPI therapy.

Financial Disclosure

David A. Pena, MD, has received consulting fees from Novartis and Takeda. He has also received fees for non-CME/CE services from Takeda.

References

Concomitant Use of PPIs and Antiplatelet Therapy

David A. Johnson, MD

Case Report

A 65-year-old man presented to the emergency room with dizziness and melena. The patient’s medical history included hypertension and hyperlipidemia, for which he was taking a statin, an angiotensin-converting enzyme inhibitor, aspirin, and clopidogrel. At the time of his presentation to the emergency room, the patient reported that he was also taking over-the-counter naproxen for a back strain that had occurred while performing yard work. Approximately 4 months prior to this emergency room visit, the patient had received a percutaneous drug-eluting cardiac stent for significant left main coronary artery stenosis and related angina due to cardiac ischemia.

Upon arrival in the emergency room, the patient’s blood pressure was 110/70 mmHg, with an orthostatic decline in systolic pressure of 10 mmHg. The patient had an emergency endoscopy that revealed an 8-mm anterior wall gastric antral ulcer with active oozing. Endoscopic injection of 1/10,000 epinephrine followed by mechanical hemoclip therapy was applied to attain hemostasis.

This case brings into focus several key questions: Is clopidogrel itself a source of potential risk for this patient? If so, what antiplatelet therapy would be recommended in this case? Also, what are the recommendations for peptic therapy in this patient? Finally, what are the potential implications of combining peptic therapy with clopidogrel?

PPIs and Antiplatelet Therapy

While combination antiplatelet therapy (clopidogrel plus aspirin) effectively reduces the risk of recurrent cardiovascular events in patients who have been previously treated for acute coronary syndrome, this therapy is not without side effects. Because these side effects include an increased risk for gastrointestinal bleeding, antiplatelet therapy can potentially place the gastroenterologist and the cardiologist at odds: the gastroenterologist may be focused on withdrawing the antiplatelet agents (given the risk of gastrointestinal bleeding), while the cardiologist is primarily concerned with the integrity of the stent patency. Slowly, however, a mutual understanding has developed between cardiologists and gastroenterologists, with both groups acknowledging that although clopidogrel may be helpful from a cardiovascular perspective, it is also clearly potentially harmful from a gastrointestinal perspective. In fact, evidence from a prospective, randomized trial indicates that clopidogrel is associated with recurrent ulcer-related bleeding. In an effort to guide good clinical practice, the American College of Gastroenterology (ACG), American College of Cardiology Foundation (ACCF), and American Heart Association (AHA) published a consensus document in 2008 in which they recommended combination antiplatelet therapy and a PPI for patients with a defined risk of ulcer complications such as bleeding.

However, recent pharmacodynamic studies suggest that concomitant use of a PPI and antiplatelet therapy may reduce the effectiveness of clopidogrel. Because clopidogrel is a prodrug, it must be biotransformed through the cytochrome P450 system in order to become active. Clopidogrel may therefore face possible competitive interaction from PPIs for the hepatic enzymes CYP2C19 or CYP3A4, both of which are necessary for conversion of clopidogrel to its active metabolite. This competitive interaction has the potential to impede the biotransformation of clopidogrel and, in turn, decrease clopidogrel activity and reduce its antiplatelet effect.

This interaction was first investigated for the PPI omeprazole. One randomized, double-blind, placebo-controlled trial found a higher platelet reactivity index when patients received omeprazole, clopidogrel, and aspirin together versus clopidogrel and aspirin alone. As a result of this study, a number of data mining analyses were performed, 2 of which are of particular importance: the Veterans Affairs database analysis by Ho and colleagues and the Merck-Medco database analysis by Kreutz and colleagues. The results of these studies suggest that the combined use of a PPI and clopidogrel leads to an increased risk of all-cause mortality and recurrent coronary syndrome. Given these data, the FDA issued a warning in 2009 regarding the potential interaction between clopidogrel and omeprazole. The FDA further recommended that neither omeprazole nor esomeprazole be used concomitantly with clopidogrel. However, only retrospective data were available at the time these recommendations were made; there was no risk stratification, no adjustment for confounding variables, and no overall global assessment of the implied risk of cardiovascular and gastrointestinal harm.
Subsequently, evidence began to emerge that genetic polymorphisms are an important factor in clopidogrel activity. The biotransformation of clopidogrel requires a certain allelic phenotype that dictates whether patients metabolize clopidogrel at a normal, relatively rapid rate or a slow rate. If a patient has a reduced-function allele that makes them a slow biotransformer, then clopidogrel would be expected to have less of an effect, due to delays in converting the pro-drug to its active form. The presence of reduced-function polymorphisms would thus diminish clopidogrel’s ability to prevent recurrent coronary syndrome. While these polymorphisms exhibit interethnic differences, they are quite prevalent, affecting 30% of whites, 40% of blacks, and 55% of East Asians.11

A meta-analysis of 9 studies including more than 9,000 patients was conducted to evaluate variants of the reduced-function CYP2C19 alleles.12 Clopidogrel-treated patients with reduced-function alleles were found to have a more-than-50% increased risk of adverse cardiovascular events and a 2.76-fold increased risk of stent thrombosis compared to patients without reduced-function alleles. In 2009, a French registry study that looked at genetic determinants of response to clopidogrel following myocardial infarction found that patients carrying any 2 CYP2C19 loss-of-function alleles had higher rates of adverse events (21.5% vs 13.3%; adjusted hazard ratio [HR], 1.98; 95% CI, 1.10–3.58). However, there was no significant risk associated with concomitant use of PPIs. The most recent data in this area suggest that even patients with the loss-of-function genotype do not have a significant increase in adverse cardiovascular outcomes when the analysis coadjusts for PPI exposure.14 Overall, these studies demonstrate that reduced-function and loss-of-function alleles consistently predict lesser cardiac benefit for patients receiving clopidogrel, independent of whether or not these patients receive a PPI.

Other studies have also looked at cardiac outcomes in patients receiving PPIs and clopidogrel. In a post-hoc analysis, O’Donoghue and associates evaluated the risk of cardiovascular death, myocardial infarction, or stroke in patients with acute coronary syndrome who were receiving clopidogrel.13 Of the 6,795 patients receiving clopidogrel, 4,529 patients were also taking a PPI at the time of randomization. This study found no association between PPI use and risk of cardiac harm in patients treated with clopidogrel (PPI vs no PPI adjusted HR, 0.94; 95% CI, 0.80–1.11).

Researchers further investigated this issue in the COGENT trial, the first randomized, multicenter study to prospectively evaluate the effect of antiplatelet therapy in combination with omeprazole in patients with cardiac risk.16 Patients in this study received 75 mg clopidogrel plus 75–325 mg aspirin in combination with 20 mg omeprazole or placebo. The primary endpoints of the study included composite gastrointestinal events (overt or occult bleeding, symptomatic gastroduodenal ulcers or erosions, obstruction, or perforation) as well as composite cardiovascular events (death from cardiovascular causes, nonfatal myocardial infarction, revascularization, or stroke). The study intended to enroll 5,000 patients, but it was only able to enroll 3,873 patients (3,761 of whom were analyzed) before the study sponsor declared bankruptcy. Nonetheless, after a median follow-up period of 133 days, no significant difference was found in the rates of cardiovascular events for patients receiving omeprazole versus those randomized to placebo (4.9% vs 5.7%, respectively [HR with omeprazole, 0.99; 95% CI, 0.68–1.44; \(P=.96 \)]). This study found no significant heterogeneity among high-risk subgroups. However, a significant reduction in the rate of gastrointestinal events was observed at 180 days among patients receiving the PPI (1.1% with omeprazole vs 2.9% with placebo [HR with omeprazole, 0.34; 95% CI, 0.18–0.63; \(P<0.001 \)].

Given that previous studies found an increased risk of all-cause mortality and recurrent coronary syndrome in patients treated with a PPI and clopidogrel, I find it interesting that the first prospective, randomized trial to evaluate the effects of cotherapy with clopidogrel, aspirin, and a PPI found no evidence of cardiovascular harm, even though this study used the PPI that has most often been implicated as having negative effects on antiplatelet activity. Importantly, this study found a 47% risk reduction in composite gastrointestinal events in patients who received clopidogrel, aspirin, and omeprazole. A recent study by Hsu and colleagues also demonstrated a risk reduction with PPIs for prevention of peptic ulcers in patients taking concomitant clopidogrel.17 Together, these results highlight an important factor that has been missed in composite studies to date: global risk assessment.

Despite the lack of global risk assessment data, the FDA released a statement on October 27, 2010 in which it reiterated its warning that combining omeprazole with clopidogrel can reduce active levels of clopidogrel and reduce antiplatelet activity.18 (The FDA rescinded this warning as it relates to other PPIs.) However, data from the COGENT trial indicate that adding a PPI to antiplatelet therapy to control adverse gastrointestinal events does not cause significant cardiovascular harm.16 Therefore, in a 2010 update to their 2008 consensus document on the concomitant use of PPIs and thienopyridines, the ACCF, ACG, and AHA continued to suggest that patients on antiplatelet therapy can benefit from PPIs if they have multiple risk factors for gastrointestinal bleeding.8,19 While available data indicate that patients with the reduced-function allele can safely receive a PPI combined with antiplatelet therapy, we do not yet have enough data to make a completely definitive statement regarding use of PPIs in these patients.

Interestingly, the most recent retrospective analyses to assess cardiovascular risk in patients taking both clopidogrel and a PPI suggest that the adverse cardiovascular risk
预先报告的患者比例最可能由“靶向偏倚”——医生倾向于为患者开具某些药物，而这些药物可能会产生并发症。20,21 近期的一项研究使用退伍军人管理局的药物利益管理数据库评价了患者在接受氯吡格雷和PPI治疗后的心脏支架置入结果，将支架置入后，使用PPI和氯吡格雷的特定人群进行了具体评价。结果表明，氯吡格雷和PPI的联合使用最可能是反映处方模式的改变，而非最终的推荐。这也说明，仔细分析药物的使用模式以及在使用氯吡格雷和PPI的患者中，许多患者的处方可能有变化。研究还表明，氯吡格雷和PPI的联合使用可能会导致血小板功能障碍。

此外，研究者还在研究中发现，氯吡格雷和PPI的使用在患者中是连续的、随机的，或者是一次性的。

研究还发现，氯吡格雷和PPI的联合使用显著增加了患者对氯吡格雷抗血小板治疗的敏感性。17,22 因此，所有可能的益处和弊端——包括心血管和胃肠相关的症状——必须考虑在内。

结论

总的来说，氯吡格雷和PPI的联合使用是 inconsistent and contradictory. The most definitive evidence is derived from the COGENT trial, but its findings conflict with other studies. Even the most recent pharmacokinetic studies seem to refute the original concerns about impaired antiplatelet effect when PPIs and clopidogrel are combined. Therefore, all risks and benefits—both cardiovascular and gastrointestinal—must be weighed when deciding on a therapeutic course. Clearly, intermediate endpoints should never be a substitute for randomized trial data with appropriate clinical outcomes.

对于上述病例中所述的患者，抗血小板治疗不应被停止，尤其是给药时的药物包括氯吡格雷和PPI。氯吡格雷和PPI的联合使用可能会导致血小板功能障碍。

财务披露

David A. Johnson, MD, has received consulting fees from Eisai, Novartis, Procter & Gamble, and Takeda. He has also received fees for non-CME/CE services from Takeda and funds for contracted research from AstraZeneca.

参考文献

Risk of Infection with PPI Therapy
Michael F. Vaezi, MD

Case Report
A 68-year-old female patient had previously presented with classic symptoms of GERD, including heartburn and regurgitation. She was treated with omeprazole (40 mg twice daily) and achieved excellent relief of symptoms, but she was concerned that use of this drug might increase her risk of pneumonia and other infections. At her most recent clinic visit, she inquired whether she should discontinue her use of omeprazole. She also wanted to know if there were alternative treatments for her condition, since her symptoms returned whenever she discontinued omeprazole.

Effects of Acid Suppression
Recently, concerns have been raised regarding the effect of acid suppression on the host defenses, with some data suggesting that patients who are taking a PPI may be more susceptible to pneumonia and/or infection with Salmonella, Campylobacter, and Clostridium difficile. From a pathophysiologic standpoint, why would PPI-induced acid suppression increase the risk for C. difficile colitis, enteric infections, and/or pneumonia?

Several theories have been proposed to answer this question. While a reduction in gastric acid relieves reflux and reflux-related symptoms, some studies suggest that acid-suppressing agents may cause several other effects on the gastrointestinal tract, including a reduction in the gastric mucosal barrier, delayed gastric emptying, delayed gastric mucosal viscosity, microbial modifications, and increased bacterial translocation. Acid suppression may also affect the immune system by decreasing leukocyte adhesions to endothelial cells and inhibiting neutrophil phagocytosis, thus reducing bactericidal killing of microbes. Combined with patient risk factors such as advanced age, immune suppression, chronic disease, hospitalization, and current antibiotic use, these mechanisms might increase the risk of infections such as C. difficile or pneumonia.

Enteric Infections
One possible way in which PPIs may affect the gastrointestinal tract is by causing small intestinal bacterial overgrowth. In a study of 200 patients with GERD, small intestinal bacterial overgrowth was detected in 50% of patients taking PPIs compared to only 6% of control patients. While this finding is intriguing, its implications are not yet clear.

PPI use may also increase the risk of infection with acid-sensitive microbes such as Salmonella or Campylobacter. The risk for Salmonella, especially, is elevated in patients who have low gastric acid levels due to gastric hypochlorhydria or pernicious anemia. Several case-control studies have therefore evaluated whether use of acid-suppressing therapy increases the risk of enteric infections. In a review of case-control studies, 4 of 5 studies evaluating the risk of Salmonella infection found some association with acid suppression, with ORs of 2.6–11.2. Similarly, 5 case-control studies found an association between Campylobacter
infection and acid suppression, with ORs of 1.7–11.7. However, 3 other studies found no association between infection and acid suppression.3 Interestingly, 2 studies on *Campylobacter* that were published by the same authors using the same database arrived at different conclusions: an association was found in 1 of these studies but not in the other.6,7 This discrepancy highlights the difficulty clinicians face when evaluating the literature on this subject, and it suggests that an inability to control for confounding factors may result in false associations.

In 2007, results were reported from a meta-analysis of 6 studies that included over 11,000 patients with *Salmonella*, *Campylobacter*, and other enteric infections.8 This meta-analysis found a significant association between PPI use and enteric infections, with an OR of 3.35 (95% CI, 1.84–6.02). Unless all confounders can be controlled, such findings do not definitively demonstrate a causal link, but they do suggest an association. As with most of the studies on this subject, the CI varied due to significant heterogeneity among the studies that could not be explained by subgroup analysis.

In addition to a possible association with *Salmonella* or *Campylobacter* infection, PPI use may also be associated with *C. difficile* infection. A Gram-positive, anaerobic bacterium, *C. difficile* is a primary cause of infectious diarrhea in hospitalized patients, and the use of antibiotics—particularly clindamycin, cephalosporins, fluoroquinolones, and penicillins—is a significant risk factor for acquiring *C. difficile* infection.9,10 Despite an overall decrease in the use of antibiotics over the past 2 decades, patients have continued to become infected with *C. difficile*. In fact, a more severe form of *C. difficile* colitis is gaining prevalence among patients who are not hospitalized or on antibiotics.11

Again, clinicians must address the question of how acid suppression might increase the risk of *C. difficile*-associated diarrhea. Since gastric acid inhibits germination and survival of *C. difficile*, PPI use may place patients at an increased risk for infection simply by reducing levels of gastric acid. In addition, other effects of acid-suppressing therapy—such as delayed gastric emptying, bile salt conversion to unconjugated bile acids, and bacterial overgrowth—may favor the acid-sensitive vegetative growth phase and contribute to an increased risk for *C. difficile* infection.9 This hypothesis has led to several studies investigating the association between acid suppression and *C. difficile* infection.

In 2005, Dial and associates conducted 2 population-based, case-control studies to determine if the use of acid-suppressing agents increased the risk of *C. difficile* infection.12 Using the United Kingdom General Practice Research Database, over 1,000 cases of *C. difficile* infection were compared to more than 10,000 control patients. This study found that the adjusted rate ratio of *C. difficile*-associated disease with PPI use was 2.9 (95% CI, 2.4–3.4). H2RAs were associated with a lower risk of infection than PPIs (rate ratio=2.0; 95% CI, 1.6–2.7), while antibiotic use was associated with a greater risk (rate ratio=3.1; 95% CI, 2.7–3.6).

Since the release of this study, various other reports have also suggested an association between PPI use and *C. difficile*-associated disease. In 2007, a large meta-analysis published by Leonard and associates pooled the various study data on *C. difficile* infection and acid-suppressing therapy.8 This analysis included 12 studies evaluating 2,948 patients with *C. difficile* infection, and it found an OR for PPI use of 2.05 (95% CI, 1.47–2.85) compared to an OR for H2RA use of 1.48 (95% CI, 1.06–2.06). As with the previously mentioned meta-analyses of other enteric infections, the various studies in this analysis were heterogeneous. In addition, clinicians should keep in mind that a true causal link cannot be reliably established without controlling for possible confounding factors, which is difficult to do in most case-control studies.

Pneumonia

Finally, numerous publications have investigated the link between the use of acid-suppressing therapy, specifically PPIs, and community-acquired pneumonia (CAP) or hospital-acquired pneumonia. The initial study that examined the potential link between acid-suppressing therapy and CAP was published by Laheij and colleagues in 2004.13 In this case-control study involving the Netherlands Integrated Primary Care Database, 5,551 cases of first-time CAP were identified from a study population of 364,683 people. The incidence rate of CAP was found to be 0.6 per 100 person-years among patients who were not taking acid-suppressing drugs, 2.5 per 100 person-years among patients taking PPIs, and 2.3 per 100 person-years among patients taking H2RAs. The adjusted relative risk for CAP was 1.89 (95% CI, 1.36–2.62). A significant positive dose-response association was observed for PPI use, with more than 1 daily dose associated with a greater risk for CAP. No significant dose-response was found for H2RAs. Interestingly, this study found a difference among various PPIs; an increased risk of CAP was associated with omeprazole and pantoprazole but not with lansoprazole. This confusing result again highlights the importance of controlling for confounding factors.

A 2008 study by Sarkar and colleagues examined the United Kingdom General Practice Research Database to look for an association between PPI use and CAP.14 This nested case-control study included over 80,000 case patients and more than 700,000 control patients. While this study found an increased risk of CAP among patients who began PPI therapy within the previous 30 days, it did not find an association between increased risk and long-term or chronic PPI use; in fact, such use was found to be protective against CAP, which is contradictory to a causal association between...
PPI use and CAP. The likely reason for this confusing result is the presence of confounding factors; after fully adjusting for gender, age, hospital, office visit, opiate use, and other confounding factors, this study found no association between current PPI use and increased risk of CAP (adjusted OR, 1.02; 95% CI, 0.97–1.08). If the authors controlled for only gender and age, an association was found, but it disappeared as they incrementally controlled for all other factors.

To determine whether a clearer association between PPI use and infection exists with hospital-acquired pneumonia, Herzig and associates conducted a prospective cohort study in 2009 in which they evaluated the association between acid-suppressing medication and hospital-acquired pneumonia among patients who were not in the intensive care unit. The adjusted OR of hospital-acquired pneumonia in patients on any type of acid-suppressing therapy was 1.3 (95% CI, 1.1–1.4). A subset analysis found a significant risk for hospital-acquired pneumonia in patients who were taking PPIs (OR, 1.3; 95% CI, 1.1–1.4) but not in patients who were taking H2RAs (OR, 1.2; 95% CI, 0.98–1.4). Again, it should be noted that the magnitude of this association was small and the potential contribution from uncontrolled confounding factors cannot be excluded.

Conclusion

When considering the various reports that have linked PPI therapy and risk of infection, clinicians should keep in mind that these are epidemiologic studies. Thus, while many of these studies indicate an association, it may not be a true association, depending on how well the study controlled for confounding factors. An increased risk of infection in patients taking PPIs is biologically plausible, but the majority of the aforementioned studies show only a weak magnitude of association, with OR of 1–2. Overall, the inconsistent findings, heterogeneity among studies, high potential for confounding, and lack of randomized controlled studies hinder our attempts to arrive at a definitive conclusion regarding the relationship between PPI use and risk of infection.

For the patient presented in the previously discussed case, I would recommend continuing on acid suppression therapy, since it improves the patient’s reflux symptoms, and I would educate her about the potential risk of infection. Also, as much as acid suppression is beneficial for patients with acid reflux disease, we must be vigilant about reducing the dose to the minimum effective level.

Financial Disclosure

Michael F. Vaezi, MD, has received funds for contracted research from Takeda.

References

Question-and-Answer Forum

In which patients is PPI use contraindicated?

Michael F. Vaezi, MD PPIs are very effective for reducing the pH of gastric acid, and these drugs can effectively treat both GERD and peptic ulcer disease. From my perspective, PPIs are generally very safe. However, PPIs should be discontinued in any patient who does not need this medication—for example, a patient who was misdiagnosed with reflux but actually has nonulcer dyspepsia or another nonreflux-related symptom. If the patient truly has reflux disease and benefits from PPI therapy, then I would only discontinue the PPI if the patient experiences acute side effects of treatment.

David A. Peura, MD Clinicians should keep in mind that the absolute risk of most side effects is still very, very small, even if the relative risk may be doubled for a particular factor. From the perspective of nutrient absorption, the potential risks are also preventable and treatable, with the exception of hypomagnesemia, which may be more difficult to manage. Therefore, the only situation where I might discontinue a PPI is if the patient develops persistent hypomagnesemia for which no other cause is found.

David A. Johnson, MD In general, the relative assessment of risk is fairly de minimis. ORs less than 2 are challengeable, particularly in retrospective studies, as these studies are frequently criticized for their potential channeling bias toward sicker patients—ie, these patients may be more complicated and already at risk for a complication related to nonsteroidal anti-inflammatory drugs (NSAIDs). Also, any perceived harm, even if it extremely small, needs to be weighed against the potential benefit. For example, if a patient is on aspirin or NSAID therapy, their risk of gastrointestinal bleeding may be far greater than their perceived risk of fracture. If the patient discontinues the PPI because they are concerned about fracture risk, a dangerous situation may be created, especially when the odds of this harm are minimal, or potentially even confounded by channeling bias.

If a patient must discontinue PPI therapy, what alternative treatments could you consider?

DP There are very few instances in which I would recommend stopping PPI therapy in patients with documented GERD. H2RAs may be an effective alternative in some patients, but there are robust data demonstrating that PPIs are better at controlling symptoms and mucosal damage than H2RAs. Surgery is another alternative option, but it is invasive.

MV Weighing various treatment alternatives should involve looking at their effectiveness for a given diagnosis and the potential risk for each therapy. I would argue that PPIs and surgical fundoplication may be equally effective in the short term; from a long-term perspective, however, both risk and cost issues tip the balance in favor of PPIs. If patients are unwilling or unable to take PPIs, then either surgical intervention or less effective therapies, such as H2RAs, might be alternative strategies.

DJ Some patients may require surgical intervention, particularly if they develop a change in their composite gastrointestinal GERD profile (ie, more regurgitation and/or increased volume of regurgitation), but such cases are extremely rare. In this situation, the selection of the surgeon would be critical; a high-volume, experienced surgeon should be identified before a patient is considered for an antireflux surgical intervention.

If a patient is receiving long-term PPI therapy, do you advise them to take extra precautions when traveling to parts of the world where they may be at increased risk for infection?

MV I do not. Some studies have examined the risk of cholera or Escherichia coli infection in patients taking PPIs, but none have conclusively shown a higher association between risk of infection and PPI use.

DP Yes, I do. For patients who do a lot of travelling to less-developed countries, I tell them to be a little bit more careful, but I do not recommend changing their medical therapy.
For a free electronic download of these slides, please direct your browser to the following web address: